Skip to main content
Log in

Aging Precipitation Behavior of 18Cr-16Mn-2Mo-1. 1N High Nitrogen Austenitic Stainless Steel and Its Influences on Mechanical Properties

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The solution-treated (ST) condition and aging precipitation behavior of 18Cr-16Mn-2Mo-1. 1N high nitrogen austenitic stainless steel (HNS) were investigated by optical microscope (OM), scanning electron microscope (SEM), and transmission electron microscope (TEM). The results show that the ST condition of 18Cr-16Mn-2Mo-1. 1N HNS with wN above 1% is identified as 1 100 °C for 90 min, followed by water quenching to make sure the secondary phases completely dissolve into austenitic matrix and prevent the grains coarsening too much. Initial time-temperature-precipitation (TTP) curve of aged 18Cr-16Mn-2Mo-1. 1N HNS which starts with precipitation of 0.05% in volume fraction is defined and the “nose” temperature of precipitation is found to be 850 °C with an incubation period of 1 min. Hexagonal intergranular and cellular Cr2N with a = 0.478 nm and c = 0.444 nm precipitates gradually increase in the isothermal aging treatment. The matrix nitrogen depletion due to the intergranular and a few cellular Cr2N precipitates induces the decay of Vickers hardness, and the increment of cellular Cr2N causes the increase in the values. Impact toughness presents a monotonie decrease and SEM morphologies show the leading brittle intergranular fracture. The ultimate tensile strength (UTS), yield strength (YS) and elongation (El) deteriorate obviously. Stress concentration occurs when the matrix dislocations pile up at the interfaces of precipitation and matrix, and the interfacial dislocations may become precursors to the misfit dislocations, which can form small cleavage facets and accelerate the formation of cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simmons J W. Overview: High-Nitrogen Alloying of Stainless Steels [J]. Mater Sci Eng, 1996, 207A(2): 159.

    Article  Google Scholar 

  2. Li H B, Jiang Z H, Zhang Z R, et al. Intergranular Corrosion Behavior of High Nitrogen Austenitic Stainless Steel [J]. Int J Miner Metall Mater, 2009, 16(6): 654.

    Google Scholar 

  3. Li H B, Jiang Z H, Yang Y, et al. Pitting Corrosion and Crevice Corrosion Behaviors of High Nitrogen Austenitic Stainless Steels [J]. Int J Miner Metall Mater, 2009, 16(5): 517.

    Article  Google Scholar 

  4. Li H B, Jiang Z H, Cao Y, et al. Fabrication of High Nitrogen Austenitic Stainless Steels With Excellent Mechanical and Pitting Corrosion Properties [J]. Int J Miner Metall Mater, 2009, 16(4): 387.

    Article  Google Scholar 

  5. Stein G, Huchlenbroich I. Manufacturing and Application of High Nitrogen Steels [J]. Mater Manuf Proc, 2004, 19(1): 7.

    Article  Google Scholar 

  6. Paton B E, Saenko V Y, Pomarin Y M, et al. Arc Slag Remelting for High Strength Steel and Various Alloys [J]. J Mater Sci, 2004, 39(24): 7269.

    Article  Google Scholar 

  7. SHI Feng, WANG Li-jun, CUI Weng-fang, et al. Precipitation Kinetics of Cr2N in a High-Nitrogen Austenitic Stainless Steel [J]. J Iron Steel Res Int, 2008, 15(6): 72.

    Article  Google Scholar 

  8. Lee T H, Oh C S, Lee C G, et al. Precipitation Characteristics of the Second Phases in High-Nitrogen Austenitic 18Cr-18Mn-2Mo-0.9N Steel During Isothermal Aging [J]. Met Mater Int, 2004, 10(3): 231.

    Google Scholar 

  9. Speidel M O. Properties and Applications of High Nitrogen Steels [C]//Proceeding of the 1st International High Nitrogen Steels. London: [s. n.], 1989: 92.

    Google Scholar 

  10. Katada Y, Sagara M, Kobayashi Y. Fabrication of High Strength High Nitrogen Stainless Steel With Excellent Corrosion Resistance and Its Mechanical Properties [J]. Mater Manuf Process, 2004, 19(1): 19.

    Article  Google Scholar 

  11. Ogawa M, Hiraoka K, Katada Y, et al. Chromium Nitride Precipitation Behavior in Weld Heat-Affected Zone of High Nitrogen Stainless Steel [J]. ISIJ Int, 2002, 42(12): 1391.

    Article  Google Scholar 

  12. Lee T H, Kim S J, Jung Y C. Crystallography Details of Pre-cipitates in Fe-22Cr-21Ni-6Mo-(N) Superaustenitic Stainless Steels Aged at 900 °C [J]. Metall Mater Trans, 2000, 31A(7): 1713.

    Article  Google Scholar 

  13. Knutsen R D, Lang C L, Basson J A. Discontinuous Cellular Precipitation in a Cr-Mn-N Steel With Niobium and Vanadium Additions [J]. Acta Mater, 2004, 52(8): 2407.

    Article  Google Scholar 

  14. Lee T H, Kim S J. Phase Identification in an Isothermally Aged Austenitic 22Cr-21Ni-6Mo-N Stainless Steel [J]. Scripta Mater, 1998, 39(7): 951.

    Article  Google Scholar 

  15. Kikuchi M, Kajihara M, Choi S K. Cellular Precipitation Involving Both Substitutional and Interstitial Solutes: Cellular Precipitation of Cr2N in Cr-Ni Austenitic Steels [J]. Mater Sci Eng, 1991, 146A(1/2): 131.

    Article  Google Scholar 

  16. Santhi Srinivas N C, Pendase R, Gouthama, et al. Initial Stages of Discontinuous Precipitation in High Nitrogen Austenitic Stainless Steels [J]. Trans Indian Inst Met, 2002, 55(4): 247.

    Google Scholar 

  17. LI Hua-bing, JIANG Zhou-hua, ZHANG Zu-rui, et al. Mechanical Properties of Nickel Free High Nitrogen Austenitic Stainless Steels [J]. J Iron Steel Res Int, 2007, 14(Supplement 1): 330.

    Article  Google Scholar 

  18. LI Hua-bing, JIANG Zhou-hua, ZHANG Zu-rui, et al. Effect of Grain Size on Mechanical Properties of Nickel-Free High Nitrogen Austenitic Stainless Steel [J]. J Iron Steel Res Int, 2007, 16(1): 58.

    Article  Google Scholar 

  19. Shankar P, Shaikh H, Sivakumar S, et al. Effect of Thermal Aging on the Room Temperature Tensile Properties of AISI Type 316LN Stainless Steel [J]. J Nuc Mater, 1999, 264(1): 29.

    Article  Google Scholar 

  20. Simmons J W, Covino B S, Hauk J A, et al. Effect of Nitride (Cr2N) Precipitation on the Mechanical, Corrosion and Wear Properties of Austenitic Stainless Steels [J]. ISIJ Int, 1996, 36(7): 846.

    Article  Google Scholar 

  21. Li H B, Jiang Z H, Ma Q F, et al. Manufacturing High Nitrogen Austenitic Stainless Steels by Pressurized Induction Furnace [C]// Applied Mechanics and Materials, 2011, 52–54: 1687.

    Google Scholar 

  22. Santhi Srinivas N C, Kutumbarao V V. On the Discontinuous Precipitation of Cr2N in Cr-Mn-N Austenitic Stainless Steels [J]. Scripta Mater, 1997, 37(3): 285.

    Article  Google Scholar 

  23. Storz O, Ibach A, Pohl M. Morphology of σ-Phase and Its Effects on the Mechanical Properties of Duplex Steels [C]// Proceedings of Duplex 2007 International Conference. Grado: [s. n. ], 2007: 95.

    Google Scholar 

  24. Jiang Z H, Zhang Z R, Li H B, et al. Microstructural Evolution and Mechanical Properties of Aging High Nitrogen Austenitic Stainless Steels [J]. Int J Miner Metall Mater, 2010, 17(6): 729.

    Article  Google Scholar 

  25. Maruyama K, Suzuki G, Kim H Y, et al. Saturation of Yield Stress and Embrittlement in Fine Lamellar TiAl Alloy [J]. Mater Sci Eng, 2002, 329A–331A(6): 190.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-bing Li.

Additional information

Foundation Item: Item Sponsored by Key Program of National Science Foundation of China (50534010); Fundamental Research Funds for Central Universities of China (N100402015)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Hb., Jiang, Zh., Feng, H. et al. Aging Precipitation Behavior of 18Cr-16Mn-2Mo-1. 1N High Nitrogen Austenitic Stainless Steel and Its Influences on Mechanical Properties. J. Iron Steel Res. Int. 19, 43–51 (2012). https://doi.org/10.1016/S1006-706X(12)60138-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(12)60138-1

Keywords

Navigation