Skip to main content
Log in

Effect of Laminar Cooling on Phase Transformation Evolution in Hot Rolling Process

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of temperature variation owing to the cooling pattern (CP) on the microstructural evolution was investigated by establishing a thermomechanical coupled FE (finite element) model. A set of constitutive equations of phase transformation was implanted into the commercial FE solver MARC through the user defined subroutine CRPLAW, and the temperature field was calculated by another user defined subroutine FILM. The results show that the final microstructure is completely bainite phase for CP one, 98% of bainite phase and 2% of ferrite phase for CP two, and 55% of bainite phase, 35% of pearlite phase and 10% of ferrite phase for CP three.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siamak Serajzadeh. Prediction of Temperature Distribution and Phase Transformation on the Run-Out Table in the Process of Hot Strip Rolling [J]. Applied Mathematical Modelling, 2003, 27(11): 861.

    Article  Google Scholar 

  2. Prieto M M, Ruiz L S, Menendez J A. Thermal Performance of Numerical Model of Hot Strip Mill Runout Table [J]. Iron-making and Steelmaking, 2001, 28(6): 474.

    Article  Google Scholar 

  3. Siamak Serajzadeh. Modelling of Temperature History and Phase Transformation During Cooling of Steel [J]. Journal of Materials Processing Technology, 2004, 146(3): 311.

    Article  Google Scholar 

  4. ZHAO Hong-zhuang, LIU Xiang-hua, WANG Guo-dong. Progress in Modelling of Phase Transformation Kinetics [J]. Journal of Iron and Steel Research, International, 2006, 13 (3): 68.

    Article  Google Scholar 

  5. Han H N, Lee J K. A Constitutive Model for Transformation Superplasticity Under External Stress During Phase Transformation of Steels [J]. ISIJ International, 2002, 42(2): 200.

    Article  Google Scholar 

  6. Sun C G, Han H N, Lee J K, et al. A Finite Element Model for the Prediction of Thermal and Metallurgical Behaviour of Strip on Run-Out-Table in Hot Rolling [J]. ISIJ International, 2002, 42(4): 392.

    Article  Google Scholar 

  7. Sameer Phadke, Praveen Pauskar, Rajiv Shivpuri. Computational Modelling of Phase Transformations and Mechanical Properties During the Cooling of Hot Rolled Rod [J]. Journal of Materials Processing Technology, 2004, 150(1/2): 107.

    Google Scholar 

  8. Garrett R P, Xu S, Lin J, et al. A Model for Predicting Austenite to Bainite Phase Transformation in Producing Dual Phase Steels [J]. International Journal of Machine Tools and Manufacture, 2004, 44(7/8): 831.

    Article  Google Scholar 

  9. Serajzadeh S, Karimi Taheri A. A Study on Austenite Decomposition During Continuous Cooling of a Low Carbon Steel [J]. Materials and Design, 2004, 25(8): 673.

    Article  Google Scholar 

  10. Senuma T, Suehiro M, Yada H. Mathematical Models for Predicting Microstructural Evolution and Mechanical Properties of Hot Strips [J]. ISIJ International, 1992, 32(3): 423.

    Article  Google Scholar 

  11. Quidort David, Brechet Yves J M. A Model of Isothermal and Non Isothermal Transformation Kinetics of Bainite in 0.5 % C Steels [J]. ISIJ International, 2002, 42(9): 1010.

    Article  Google Scholar 

  12. LIU J, Yanagida A, Sugiyama S, et al. The Analysis of Phase Transformation for the Prediction of Microstructure Change After Hot Forming [J]. ISIJ International, 2001, 41 (12): 1510.

    Article  Google Scholar 

  13. Lin J, Dean T A. Modelling of Microstructure Evolution in Hot Forming Using Unified Constitutive Equations [J]. Journal of Materials Processing Technology, 2005, 167(2/3): 354.

    Article  Google Scholar 

  14. Suehiro M, Senuma T, Yada H, et al. Application of Mathematical Model for Predicting Microsturctural Evolution to High Carbon Steels [J]. ISIJ International, 1992, 32(3): 433.

    Article  Google Scholar 

  15. Tamas Reti, Zoltan Fried, Imre Felde. Computer Simulation of Steel Quenching Process Using a Multi-Phase Transformation Model [J]. Computational Materials Science, 2001, 22 (3/4): 261.

    Google Scholar 

  16. Yoshiyuki Saito, Chiaki Shiga. Computer Simulation of Microsturctural Evolution in Thermomechanical Processing of Steel Plates [J]. ISIJ International, 1992, 32(3): 414.

    Article  Google Scholar 

  17. Han Heung Nam, Lee Jae Kon, Kim Hong Joon, et al. A Model for Deformation, Temperature and Phase Transformation Behaviour of Steels on Run-Out Table in Hot Strip Mill [J]. Journal of Materials Processing Technology, 2002, 128 (1): 216.

    Article  Google Scholar 

  18. Gamsjager E, Antretter T, Schmaranzer C, et al. Diffusional Phase Transformation and Deformation in Steels [J]. Computational Materials Science, 2002, 25(1/2): 92.

    Article  Google Scholar 

  19. Jun H J, Kang J S, Seo D H, et al. Effects of Deformation and Boron on Microstructure and Continuous Cooling Transformation in Low Carbon HSLA Steels [J]. Materials Science and Engineering, 2006, 422A(1/2): 157.

    Article  Google Scholar 

  20. Minoru Umemoto, Akifumi Hiramatsu, Akio Moriya, et al. Computer Modelling of Phase Transformation From Work-Hardened Austenite [J]. ISIJ International 1992, 32(3): 306.

    Article  Google Scholar 

  21. Kempen A T W, Sommer F, Mittemeijer E J. The Kinetics of the Austenite-Ferrite Phase Transformation of Fe-Mn: Differential Thermal Analysis During Cooling [J]. Acta Materialia, 2002, 50(14): 3545.

    Article  Google Scholar 

  22. Kang C G, Kim Y D. Model Experiments for the Determination of the Heat-Transfer Coefficient and Transition Thermal Analysis in the Direct Rolling Process [J]. Journal of Materials Processing Technology, 1998, 84(1/2/3): 210.

    Article  Google Scholar 

  23. Donnay B, Herman J C, Leroy V. Microstructure Evolution of C-Mn Steels in the Hot Deformation Process: the Stripcam Model [J]. Materials Science and Technology, 1990, 6: 1072.

    Article  Google Scholar 

  24. Atsuhiko Yoshie, Masaaki Fujioka, Yoshiyuki Watanabe, et al. Modelling of Microstructural Evolution and Mechanical Properties of Steel Plates Produced by Thermo-Mechanical Control Process [J]. ISIJ International, 1992, 32(3): 395.

    Article  Google Scholar 

  25. Ferreira Ivaldo L, Spinelli Jose E, Pires Jose C, et al. The Effect of Melt Temperature Profile on the Transient Metal/Mold Heat Transfer Coefficient During Solidification [J]. Materials Science and Engineering, 2005, 408A(1/2): 317.

    Article  Google Scholar 

  26. Lakhdar Taleb, Francois Sidoroff. A Micromechanical Modelling of the Greenwood-Johnson Mechanism in Transformation Induced Plasticity [J]. International Journal of Plasticity, 2003, 19(10): 1821.

    Article  Google Scholar 

  27. De Cosmo M, Galantucci L M, Tricarico L. Design of Process Parameters for Dual Phase Steel Production With Strip Rolling Using the Finite-Element Method [J]. Journal of Materials Processing Technology, 1999, 92–93: 486.

    Article  Google Scholar 

  28. Al-Abbasi F M, Nemes J A. Micromechanical Modelling of Dual Phase Steels [J]. International Journal of Mechanical Sciences, 2003, 45(9): 1449.

    Article  Google Scholar 

  29. Bontcheva N, Petzov G. Total Simulation Model of the Thermo-Mechanical Process in Shape Rolling of Steel Rods [J]. Computational Materials Science, 2005, 34(4): 377.

    Article  Google Scholar 

  30. Cao J, Lin J, Dean T A. Scaling Up Evolutionary Programming With Combined Method for Determining Unified Viscoplastic/Creep Constitutive Equations [J]. International Journal of Mechanical Sciences, 2005, 12: 678.

    Google Scholar 

  31. Li B, Lin J, Yao X. A Novel Evolutionary Algorithm for Determining Unified Creep Damage Constitutive Equations [J]. International Journal of Mechanical Sciences, 2002, 44(5): 987.

    Article  Google Scholar 

  32. Yang D, Ning L, Lin J, et al. A Set of Models for Predicting Phase Transformation During Continuous Cooling Transformation [J]. International Journal of Mechanical Science, 2008, 6: 89.

    Google Scholar 

  33. Vander Voort G F. Atlas of Time-Temperature Diagrams for Irons and Steels [M]. Oh: ASM International, 1991.

    Google Scholar 

  34. CHEN Jia-xiang. The Continuous Cooling Steelmaking [M]. Beijing: Metallurgical Industry Press, 1990 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin-xin Ning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ning, Lx., Yang, Dj., Lin, J. et al. Effect of Laminar Cooling on Phase Transformation Evolution in Hot Rolling Process. J. Iron Steel Res. Int. 17, 28–32 (2010). https://doi.org/10.1016/S1006-706X(10)60179-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(10)60179-3

Key words

Navigation