Skip to main content
Log in

Influence of Prior Austenite Deformation and Non-Metallic Inclusions on Ferrite Formation in Low-Carbon Steels

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Effects of prior austenite deformation and non-metallic inclusions on the ferrite nucleation and grain refinement of two kinds of low-carbon steels have been studied. The ferrite nucleation on MnS and V(C,N) is observed. The combination of thermomechanical processes with adequate amounts of non-metallic inclusions formed in low-carbon steels could effectively refine the grain size and the microstructure. Ferrite nucleated on the single MnS or V(C,N) inclusions and complex MnS+V(C,N) inclusion. The proper addition of elements S and V could effectively promote the formation of ferrite and further refinement of ferrite grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garcia C I, Lis A K., Pytel S M, et al. Ultra-Low Carbon Bainitic Plate Steels: Processing, Microstructure and Properties [J]. ISS Trans, 1992, 13: 103.

    Google Scholar 

  2. Hulka K, Hesterkamp F, Nachtel L. Microstructure and Properties of HSLA Steels [M]. Warrendale: TMS, 1988.

    Google Scholar 

  3. Ouchi C. Development of Steel Plates by Intensive Use of TM-CP and Direct Quenching Processes [J]. ISIJ Int, 2001, 41 (6): 542.

    Article  Google Scholar 

  4. Lee J L, Pan Y T. The Formation of Intragranular Acicular Ferrite in Simulated Heat Affected Zone [J]. ISIJ Int, 1995, 35(8): 1027.

    Article  Google Scholar 

  5. Zhang Z, Farrar R A. Role of Non-Metallic Inclusions in Formation of Acicular Ferrite in Low Alloy Weld Metals [J]. Mater Sci Technol, 1996, 12(3): 237.

    Article  Google Scholar 

  6. Madariaga I, Gutierrez I. Role of the Particle-Matrix Interface on the Nucleation of Acicular Ferrite in a Medium Carbon Microalloyed Steel [J]. Acta Mater, 1999, 47(3): 951.

    Article  Google Scholar 

  7. Shim J H, Cho Y W, Chung S H, et al. Nucleation of Intragranular Ferrite at Ti2O3 Particle in Low Carbon Steel [J]. Acta Mater, 1999, 47(9): 2751.

    Article  Google Scholar 

  8. Mills A R, Thewlis G, Whiteman J A. Nature of Inclusions in Steel Weld Metals and Their Influence on Formation of Acicular Ferrite [J]. Mater Sci Technol, 1987, 3(12): 1051.

    Article  Google Scholar 

  9. Shigesato G, Sugiyama M. Development of in Situ Observation Technique Using Scanning Ion Microscopy and Demonstration of Mn Depletion Effect on Intragranular Ferrite Transformation in Low-Alloy Steel [J]. J Electron Microsc, 2002, 51(6): 359.

    Article  Google Scholar 

  10. Kim H S, Lee H G, Oh K S. MnS Precipitation in Association With Manganese Silicate Inclusions in Si/Mn Deoxidized Steel [J]. Metall Mater Trans, 2001, 32A(6): 1519.

    Article  Google Scholar 

  11. Shim J H, Oh Y J, Sun J Y, et al. Ferrite Nucleation Potency of Non-Metallic Inclusions in Medium Carbon Steels [J]. Acta Mater, 2001, 49(12): 2115.

    Article  Google Scholar 

  12. Yang Z G, Enomoto M. A Discrete Lattice Plane Analysis of Coherent f. c. c. /B1 Interfacial Energy [J]. Acta Mater, 1999, 47(18): 4515.

    Article  Google Scholar 

  13. Yang Z G, Enomoto M. Calculation of the Interfacial Energy of Bl-Type Carbides and Nitrides With Austenite [J]. Metall Mater Trans, 2001, 32A(2): 267.

    Article  Google Scholar 

  14. Yang Z G, Enomoto M. Discrete Lattice Plane Analysis of Baker-Nutting Related Bl Compound/Ferrite Interfacial Energy [J]. Mater Sci Eng, 2002, A332: 184.

    Article  Google Scholar 

  15. Miyamoto G, Shinyoshi T, Yamaguchi J, et al. Crystallography of Intragranular Ferrite Formed on [MnS+V(C,N)] Complex Precipitate in Austenite [J]. Scripta Mater, 2003, 48(4): 371.

    Article  Google Scholar 

  16. Pan T, Yang Z G, Bai B Z, et al. Study of Thermal Stress and Strain Energy in γ-Fe Matrix Around Inclusion Caused by Thermal Coefficient Difference [J]. Acta Mater Sinica, 2003, 39(10): 1037.

    Google Scholar 

  17. Enomoto M. Nucleation of Phase Transformations at Intragranular Inclusions in Steel [J]. Metall Mater, 1998, 4(2): 115.

    Google Scholar 

  18. Gibbs R K, Hodgson P D, Parker B A. The Formation of the Highly Crystallographic Bainitic [C] //Liaw P K, eds. Proceedings of the Morris E. Fine Symposium. Warrendale: TMS, 1991: 73.

    Google Scholar 

  19. Bakkaloglu A. Effect of Processing Parameters on the Micro-structure and Properties of an Nb Microalloyed Steel [J]. Mater Lett, 2000, 56(3): 200.

    Article  Google Scholar 

  20. Chiou C S, Yang J R, Huang C Y. The Effect of Prior Compressive Deformation of Austenite on Toughness Property in an Ultra-Low Carbon Bainitic Steel [J]. Mater Chem Phys, 2001, 69(1/2/3): 113.

    Article  Google Scholar 

  21. Wang J P, Yang Z G, Bai B Z, et al. Grain Refinement and Microstructural Evolution of Grain Boundary Allotriomorphic Ferrite/Granular Bainite Steel After Prior Austenite Deformation [J]. Mater Sci Eng, 2004, 369AU/2): 112.

    Article  Google Scholar 

  22. Misra R D K, Nathani H, Hartmann J E, et al. Microstructural Evolution in a New 770 MPa Hot Rolled Nb-Ti Microalloyed Steel [J]. Mater Sci Eng, 2005, 394A(1/2): 339.

    Article  Google Scholar 

  23. Lee J L, Pan Y T. Effect of Sulfur Content on the Microstructure and Toughness of Simulated Heat-Affected Zone in Ti-Killed Steels [J]. Metall Trans, 1993, 24A(6): 1399.

    Article  Google Scholar 

  24. Tomita Y, Saito N. Improvement in HAZ Toughness of Steel by TiN-MnS Addition [J]. ISIJ Int, 1994, 34(10): 829.

    Article  Google Scholar 

  25. Maloney J L, Garrison W M. The Effect of Sulfide Type on the Fracture Behavior of HY180 Steel [J]. Acta Mater, 2005, 53(2): 533.

    Article  Google Scholar 

  26. GUO A M, LI S R, GUO J, et al. Effect of Zirconium Addition on the Impact Toughness of the Heat Affected Zone in a High Strength Low Alloy Pipeline Steel [J]. Mater Charact, 2008, 59(2): 134.

    Article  Google Scholar 

  27. PAN T, YANG Z G, ZHANG C, et al. Kinetics and Mechanisms of Intragranular Ferrite Nucleation on Non-Metallic Inclusions in Low Carbon Steels [J]. Mater Sci Eng, 2006, 438–440A: 1128.

    Article  Google Scholar 

  28. Maki T, Furuhara T. Effect of Oxygen Potential on Cohesion of Pulverized Iron Oxide Under a Reducing Atmosphere [J]. Tetsu-to-Hagane, 2005, 91(1): 16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Zhang.

Additional information

Foundation Item: Item Supported by National Natural Science Foundation of China (50871059); Specialized Research Foundation for Doctoral Program of Higher Education (20070003006)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Xia, Zx., Yang, Zg. et al. Influence of Prior Austenite Deformation and Non-Metallic Inclusions on Ferrite Formation in Low-Carbon Steels. J. Iron Steel Res. Int. 17, 36–42 (2010). https://doi.org/10.1016/S1006-706X(10)60111-2

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(10)60111-2

Key words

Navigation