Skip to main content
Log in

Role of Cerium on Transformation Kinetics and Mechanical Properties of Low Carbon Steels

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present study has focused on the detailed dilatometric and electron microscopic analysis of the formation of austenite and its decomposition in two Cerium (Ce) modified steels containing 0.6 and 0.03 wt pct Ce. Despite a long incubation time, the austenite formation is very fast in the high-Ce steel (0.6 wt pct Ce) during heating. Whereas, the low-Ce steel (0.03 wt pct Ce) promotes early nucleation of austenite but shows a significant delay in the completion of the transformation. Similar trend has been observed for the decomposition of austenite during cooling; the low-Ce steel shows early start of transformation with a sluggish kinetics. The role of Ce on the overall transformation kinetics of austenite during the heating–cooling cycle has been investigated and discussed from thermodynamic viewpoint and nucleation probability. Engineering stress–strain curves have shown a better combination of strength and ductility in the low-Ce steel compared to the high-Ce one. Coarse and spherical Ce2O3 particles (average dia. ~ 4 µm) in grain interior along with the brittle and grain boundary elongated Ce-C/Ce-Fe intermetallic phases (length ~ 8 µm and width ~ 3 µm) are responsible for the lower strain hardening as well as an early failure of the high-Ce steel. Finally, the microstructure-tensile property correlation has been established using chemical composition and fractographic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

taken from (b) pearlite and (c, d) matrix regions respectively

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. F. Pan, J. Zhang, H.L. Chen, Y.H.H.H. Su, C.L. Kuo, Y.H.H.H. Su, S.H. Chen, K.J. Lin, P.H. Hsieh, and W.S. Hwang: Materials (Basel)., 2016, vol. 9, p. 417.

    Article  CAS  Google Scholar 

  2. D.S. Sarma, A. V. Karasev, P.G. Jonsson, P.G. Jönsson (2009) ISIJ Int., 49, 1063–74.

    Article  CAS  Google Scholar 

  3. Y. Ji, M.-X.X. Zhang, and H. Ren: Metals (Basel)., 2018, vol. 8, p. 884.

    Article  CAS  Google Scholar 

  4. A. Karmakar and K. Barat: Philos. Mag. Lett., 2019, vol. 99, pp. 261–73.

    Article  CAS  Google Scholar 

  5. A. Karmakar, A. Karani, S. Patra, and D. Chakrabarti (2013) Metall. Mater. Trans. A vol. 44, pp. 2041–52.

    Article  CAS  Google Scholar 

  6. M.Z. Jiang, Y.C. Yu, H. Li, X. Ren, and S.B. Wang: High Temp. Mater. Process., 2017, vol. 36, pp. 145–53.

    Article  CAS  Google Scholar 

  7. W. Bleck and K. Phiu-On: in Materials Science Forum, vol. 500–501, Materials Science Forum, San Sebastian, Spain, 2005, pp. 97–112.

  8. B. Shakerifard, J. Galan Lopez, F. Hisker, and L.A.I.I. Kestens (2018) IOP Conf. Ser. Mater. Sci. Eng., 375, 12022.

    Article  Google Scholar 

  9. A. Karmakar, R.D.K. Misra, S. Neogy, and D. Chakrabarti (2013) Metall. Mater. Trans. A, vol. 44, pp. 4106–18.

    Article  CAS  Google Scholar 

  10. W. Longmei (2004) Chinese Rare. 22, 48–54.

    Google Scholar 

  11. D. Zhou, P. Peng, J.L.S. Xu, and R. Stud (2004) Foundry Equip, 40: 35–38.

    Google Scholar 

  12. F. Pan, J. Zhang, H.-L. Chen, Y.-H.Y.-H. Su, Y.-H.Y.-H. Su, and W.-S. Hwang: Sci. Rep., 2016, vol. 6, p. 35843.

    Article  CAS  Google Scholar 

  13. G.M. Ecer and G.H. Meier: Oxid. Met., 1979, vol. 13, pp. 159–80.

    Article  CAS  Google Scholar 

  14. D. Pilone, A. Brotzu, and F. Felli: Procedia Struct. Integr., 2016, vol. 2, pp. 2291–8.

    Article  Google Scholar 

  15. X. Li, J. Shu, L. Chen, and H. Bi: Acta Metall. Sin. (English Lett., 2014, vol. 27, pp. 501–7.

  16. M.F. Pillis, O.V. Correa, and L.V. Ramanathan: Mater. Res., 2016, vol. 19, pp. 611–7.

    Article  CAS  Google Scholar 

  17. Y. Nishiyama, Y. Sawaragi, T. Matsuda, S. Kihara, and I. Kajigaya (1998) Sumitomo Searc 4: 27-33.

    Google Scholar 

  18. A. Bhattacharya, A. Karmakar, A. Karani, M. Ghosh, and D. Chakrabarti: J. Mater. Eng. Perform., 2019, vol. 28, pp. 753–68.

    Article  CAS  Google Scholar 

  19. Z. Yu and C. Liu: Metals (Basel)., 2019, vol. 9, p. 804.

    Article  CAS  Google Scholar 

  20. F. Pan, H.L. Chen, Y.H. Su, Y.H. Su, and W.S. Hwang: Sci. Rep., 2017, vol. 7, pp. 1–8.

    Article  CAS  Google Scholar 

  21. P.E. Waudby: Int Met Rev, 1978, vol. 23, pp. 74–98.

    Article  CAS  Google Scholar 

  22. B. Wen, B. Song, N. Pan, Q. Shu, X. Hu, and J. Mao: J. Iron Steel Res. Int., 2011, vol. 18, pp. 38–44.

    Article  CAS  Google Scholar 

  23. P. Dutta, S. Pal, M.S. Seehra, Y. Shi, E.M. Eyring, and R.D. Ernst: Chem. Mater., 2006, vol. 18, pp. 5144–6.

    Article  CAS  Google Scholar 

  24. J. Dhanalakshmi, S. Iyyapushpam, S.T. Nishanthi, M. Malligavathy, D. P. Padiyan(2017) Adv. Nat. Sci. Nanosci. Nanotechnol., 8, 1015015.

    Article  CAS  Google Scholar 

  25. M. Song, B. Song, Z. Yang, S. Zhang, and C. Hu: High Temp. Mater. Process., 2017, vol. 36, pp. 683–91.

    Article  CAS  Google Scholar 

  26. H. Zhang, I.E. Castelli, S. Santucci, S. Sanna, N. Pryds, and V. Esposito: Phys. Chem. Chem. Phys., 2020, vol. 22, pp. 21900–8.

    Article  CAS  Google Scholar 

  27. Z. Adabavazeh, W.S. Hwang, and Y.H. Su: Sci. Rep., 2017, vol. 7, p. 46503.

    Article  CAS  Google Scholar 

  28. H. Mabuchi, R. Uemori, and M. Fujioka: ISIJ Int., 1996, vol. 36, pp. 1406–12.

    Article  CAS  Google Scholar 

  29. D. Loder, S.K. Michelic, and C. Bernhard: J. Mater. Sci. Res., 2016, vol. 6, p. 24.

    Google Scholar 

  30. F. Chai, H. Su, C. Yang, and D. Xue: J. Iron Steel Res. Int., 2014, vol. 21, pp. 369–74.

    Article  CAS  Google Scholar 

  31. T. Nishizawa, I. Ohnuma, and K. Ishida: Mater. Trans. JIM, 1997, vol. 38, pp. 950–6.

    Article  CAS  Google Scholar 

  32. C.-K.K. Lin, H.-H.H. Lai, Y.-H.H.F. Su, G.-R.R. Lin, W.-S.S. Hwang, and J.-C.C. Kuo: Materials (Basel)., 2018, vol. 11, p. 2241.

    Article  CAS  Google Scholar 

  33. Z. Adabavazeh, W.-S. Hwang, and A.R.A. Dezfoli: Crystals, 2017, vol. 7, p. 308.

    Article  CAS  Google Scholar 

  34. M. Tang, K. Wu, J. Liu, L. Cheng, X. Zhang, and Y. Chen: Materials (Basel)., 2019, vol. 12, pp. 30–5.

    Google Scholar 

  35. Y. Xiang, Z. Chen, X. Wei, and Z. Wu: Xiyou Jinshu Cailiao Yu Gongcheng, 2015, vol. 44, pp. 1335–9.

    CAS  Google Scholar 

  36. F. Hao, B. Liao, D. Li, T. Dan, X. Ren, Q. Yang, and L. Liu: J. Rare Earths, 2011, vol. 29, pp. 609–13.

    Article  CAS  Google Scholar 

  37. Y. Wang, G. Cheng, W. Wu, and Y. Li: Corros. Sci., 2018, vol. 130, pp. 252–60.

    Article  CAS  Google Scholar 

  38. C. Liu, R.I. Revilla, Z. Liu, D. Zhang, X. Li, and H. Terryn: Corros. Sci., 2017, vol. 129, pp. 82–90.

    Article  CAS  Google Scholar 

  39. H. Fu, Q. Xiao, J. Kuang, Z. Jiang, and J. Xing: Mater. Sci. Eng. A, 2007, vol. 466, pp. 160–5.

    Article  CAS  Google Scholar 

  40. B.L. Mordike: Physical Metallurgy Principles, vol. 17, Van Nostrand, 1965.

  41. P. Paupler and G.E. Dieter: Mechanical Metallurgy., vol. 23, McGraw-Hill, New York, 2011.

    Google Scholar 

  42. Callister W. D. (1997) Materials Science and Engineering: An Introduction, 6th edn., Wiley: New York.

    Google Scholar 

  43. R.E.Smallman and R.J. Bishop (1999) Modern Physical Metallurgy and Materials Engineering, Elsevier, Amsterdam.

    Google Scholar 

  44. C. Halder, A. Karmakar, S.M. Hasan, D. Chakrabarti, M. Pietrzyk, N. Chakraborti (2016) Metall. Mater. Trans. A, vol. 47, pp. 5890–906.

    Article  CAS  Google Scholar 

  45. S. Roy, A. Karmakar, S. Mukherjee, S. Kundu, D. Srivastava, and D. Chakrabarti: Mater. Sci. Technol. (United Kingdom), 2014, vol. 30, pp. 1142–53.

    Article  CAS  Google Scholar 

  46. S. Patra, A. Mandal, M. Mandal, V. Kumar, R. Mitra, and D. Chakrabarti: Metall. Mater. Trans. A, 2019, vol. 50, pp. 947–65.

    Article  CAS  Google Scholar 

  47. R. Pradhan, A. Karmakar, M. Ghosh, D. Chakrabarti, and S. Mukherjee: SN Appl. Sci., 2019, vol. 1, p. 663.

    Article  CAS  Google Scholar 

  48. S.M. Hasan, M. Ghosh, D. Chakrabarti, and S.B. Singh: Mater. Sci. Eng. A, 2020, vol. 771, p. 138590.

    Article  CAS  Google Scholar 

  49. S. Patra, S. Roy, V. Kumar, A. Haldar, D. Chakrabarti (2011) Metall. Mater. Trans. A, 42, 2575–90.

    Article  CAS  Google Scholar 

  50. T.Y. Hsu: ISIJ Int., 1998, vol. 38, pp. 1153–64.

    Article  CAS  Google Scholar 

  51. Y. Jingsheng, Y. Zongsen, and W. Chengjian: JOM, 1988, vol. 40, pp. 26–31.

    Article  Google Scholar 

  52. X. Zhang, G. Ma, M. Liu, and Z. Li: Metals (Basel)., 2019, vol. 9, pp. 1–15.

    Google Scholar 

  53. B. Wen, B. Song, N. Pan, Q.Y. Hu, and J.H. Mao: Int. J. Miner. Metall. Mater., 2011, vol. 18, pp. 652–8.

    Article  CAS  Google Scholar 

  54. C. García De Andrés, F.G. Caballero, C. Capdevila, and L.F. Álvarez: Mater. Charact., 2002, vol. 48, pp. 101–11.

    Article  Google Scholar 

  55. C.-S. Oh, H.N. Han, C.G. Lee, T.-H. Lee, and S.-J. Kim: Met. Mater. Int., 2004, vol. 10, pp. 399–406.

    Article  CAS  Google Scholar 

  56. R. Zhang, W. Zheng, X. Veys, G. Huyberechts, H. Springer, and M. Selleby: J. Phase Equilibria Diffus., 2018, vol. 39, pp. 476–89.

    Article  CAS  Google Scholar 

  57. A. Karmakar, M. Ghosh, and D. Chakrabarti: Mater. Sci. Eng. A, 2013, vol. 564, pp. 389–99.

    Article  CAS  Google Scholar 

  58. A. Karmakar, M. Mandal, A. Mandal, M. Basiruddin, S. Mukherjee, D. Chakrabarti (2016) J. Metall. Mater. Trans. A, https://doi.org/10.1007/s11661-015-3248-y.

    Article  Google Scholar 

  59. A. Kaal (2010) Annu B. 4, pp. 1–27.

    Google Scholar 

  60. Y. Li, M. Sun, Z. Jiang, C. Chen, K. Chen, X. Huang, S. Sun, and H. Li: Metals (Basel)., 2019, vol. 9, p. 54.

    Article  CAS  Google Scholar 

  61. H. Li, Y. Chong Yu, X. Ren, S. H. Zhang, and S. B. Wang (2017) J. Iron Steel Res. Int., vol. 24, pp. 925–34.

    Article  Google Scholar 

  62. K.H.J. Buschow and J.S. van Wieringen: Phys. status solidi, 1970, vol. 42, pp. 231–9.

    Article  CAS  Google Scholar 

  63. M. Mardani, I. Fartushna, A. Khvan, V. Cheverikin, D. Ivanov, A. Kondratiev, and A. Dinsdale: J. Alloys Compd., 2018, vol. 730, pp. 352–9.

    Article  CAS  Google Scholar 

  64. J.P.Y. Tan, H.R. Tan, C. Boothroyd, Y.L. Foo, C. B. He, M. Lin: J. Phys. Chem. C, 2011, vol. 115, pp. 3544–51.

    Article  CAS  Google Scholar 

  65. C. García De Andrés, F.G. Caballero, C. Capdevila, L.F. Álvarez, C. Garcıia de Andrés, F.G. Caballero, C. Capdevila, and L.F. Álvarez: Mater. Charact., 2002, vol. 48, pp. 101–11.

    Article  Google Scholar 

  66. H. Yan, Y. Hu, and D. Zhao: Metall. Mater. Trans. A, 2018, vol. 49, pp. 5271–6.

    Article  CAS  Google Scholar 

  67. G. Thewlis: Mater. Sci. Technol., 2006, vol. 22, pp. 153–66.

    Article  CAS  Google Scholar 

  68. J. Gao, P. Fu, H. Liu, and D. Li: Metals (Basel)., 2015, vol. 5, pp. 383–94.

    Article  Google Scholar 

  69. D.A. Porter, K.E. Easterling, and M.Y. Sherif: Phase Transformations in Metals and Alloys, Third Edition, Taylor & Francis, 2009.

  70. H. Azizi-Alizamini, M. Militzer, and W.J. Poole: Metall. Mater. Trans. A, 2011, vol. 42, pp. 1544–57.

    Article  CAS  Google Scholar 

  71. H.A.-A. Matthias, M.J. Poole (1975) Trans. ISIJ, vol. 15, pp. 305–12.

    Article  Google Scholar 

  72. B.L. Bramfitt: Metall. Trans., 1970, vol. 1, pp. 1987–95.

    Article  CAS  Google Scholar 

  73. J. Lan, J. He, W. Ding, Q. Wang, and Y. Zhu: ISIJ Int., 2000, vol. 40, pp. 1275–82.

    Article  CAS  Google Scholar 

  74. B.K. Sokolov and V.D. Sadovskii: Met. Sci. Heat Treat. Met., 1959, vol. 1, pp. 7–14.

    Article  Google Scholar 

  75. W.G. Wilson, D.A.R. Kay, and A. Vahed: J Met, 1974, vol. 26, pp. 14–23.

    CAS  Google Scholar 

  76. L. Daizhong, G. Shuqin, and Z. Liefu: Steel Res., 1987, vol. 58, pp. 167–71.

    Article  Google Scholar 

  77. L. Daizhong, G. Shugin, and Z. Liefu: Steel Res., 1985, vol. 56, pp. 219–23.

    Article  Google Scholar 

  78. H. Li Daizhong, Wang Zeyu, Zhang Liefu, Wang Xinshi, Shenyang, and Fan Zhanghua: Arch. Eisenhuttenwes.

  79. D.J. Abson: Sci. Technol. Weld. Join., 2018, vol. 23, pp. 635–48.

    Article  CAS  Google Scholar 

  80. H.M. Flower and T.C. Lindley: Mater. Sci. Technol., 2000, vol. 16, pp. 26–40.

    Article  Google Scholar 

  81. S.K. Paul, A. Raj, P. Biswas, G. Manikandan, and R.K.K. Verma: Mater. Des., 2014, vol. 57, pp. 211–7.

    Article  CAS  Google Scholar 

  82. Y.Y. Jiang, Z.D. Wang, X.T. Deng, and R.D.K. Misra: Key Eng. Mater., 2021, vol. 871, pp. 53–8.

    Article  Google Scholar 

  83. Y. Bergström: Mater. Sci. Eng., 1970, vol. 5, pp. 193–200.

    Article  Google Scholar 

  84. A.J. DeArdo: in HSLA Steels 2015, Microalloying 2015 and Offshore Engineering Steels 2015, T.C.S. for Metals and C.A. of Engineering, eds., Hangzhou, Zhejiang 2015, pp. 17–32.

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anish Karmakar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 12, 2021; accepted June 7, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadgaye, C., Hasan, S.M., Patra, S. et al. Role of Cerium on Transformation Kinetics and Mechanical Properties of Low Carbon Steels. Metall Mater Trans A 52, 3978–3995 (2021). https://doi.org/10.1007/s11661-021-06358-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06358-7

Navigation