Skip to main content
Log in

A new ductile fracture criterion for various deformation conditions based on microvoid model

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

To accurately predict the occurrence of ductile fracture in metal forming processes, the Gurson-Tvergaard (GT) porous material model with optimized adjustment parameters is adopted to analyze the macroscopic stress-strain response, and a practical void nucleation law is proposed with a few material constants for engineering applications. Mechanical and metallographic analyses of uniaxial tension, torsion and upsetting experiments are performed. According to the character of the metal forming processes, the basic mechanisms of ductile fracture are divided into two modes: tension-type mode and shear-type mode. A unified fracture criterion is proposed for wide applicable range, and the comparison of experimental results with numerical analysis results confirms the validity of the newly proposed ductile fracture criterion based on the GT porous material model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garrison J W M, Moody N R. Ductile Fracture [J]. J Phys Chem Solids, 1987, 48(11): 1035.

    Article  Google Scholar 

  2. Jinkook K, Gao X S, Tirumalai S S. Modeling of Voids Growth in Ductile Solids: Effects of Stress Triaxiality and Initial Porosity [J]. Eng Fract Mech, 2004, 71: 379.

    Article  Google Scholar 

  3. Gurson A L. Continuum of Ductile Rupture by Void Nucleation and Growth: Part I — Yield Criteria and Flow Rules for Porous Ductile Media [J]. J Engng Mater Technol, 1977, 99: 2.

    Article  Google Scholar 

  4. Tvergaard V. On Localization in Ductile Materials Containing Spherical Voids [J]. Int J Frac, 1982, 18: 237.

    Google Scholar 

  5. McClintock F A. A Criterion for Ductile Fracture by Growth of Holes [J]. J Appl Mech, 1968, 35: 363.

    Article  Google Scholar 

  6. Kobayashi S, Lee C H. Deformation Mechanics and Workability in Upsetting Solid Circular Cylinders [A]. in Proceedings of the North American Metalworking Research Conference [C]. Amherst: Dearborn, 1973. 185.

    Google Scholar 

  7. Wifi A S, Hamid A A, Abbasi N E. Computer-Aided Evaluation of Workability in Bulk Forming Processes [J]. J Mater Process Technol, 1998, 77: 285.

    Article  Google Scholar 

  8. Reiner K, Gottfried B. The Determination of Formability for Cold and Hot Forming Conditions [J]. Steel Res, 1999, 70: 147.

    Article  Google Scholar 

  9. Gouveia BPPA, Rodrigues J M C, Martins P A F. Ductile Fracture in Metalworking: Experimental and Theoretical Research [J]. J Mater Process Technol, 2000, 101: 52.

    Article  Google Scholar 

  10. Rao A V, Ramakrishnan N, Kumar R K. A Comparative Evaluation of the Theoretical Failure Criteria for Workability in Cold Forging [J]. J Mater Process Technol, 2003, 142: 29.

    Article  Google Scholar 

  11. Komori K. Proposal and Use of a Void Model for the Simulation of Ductile Fracture Behavior [J]. Acta Mater, 1999, 47 (10): 3069.

    Article  Google Scholar 

  12. Oh S I, Chen C C, Kobayashi S. Ductile Fracture in Ax-Symmetric Extrusion and Drawing [J]. Transaction of the ASME, 1979, 101: 36.

    Google Scholar 

  13. Brozzo P, Deluca B, Rendina R. A New Method for the Predicting of Formability in Metal Sheet: Sheet Metal Forming and Formability [A]. Proceedings of the Seventh Biennial Conference of the International Deep Drawing Research Group [C]. Metals Park: Elsevier, 1972. 18.

  14. Rice J R, Tracey D M. On the Ductile Enlargement of Voids in Triaxial Stress Fields [J]. J Mech Phys Solids, 1969, 17: 201.

    Article  Google Scholar 

  15. Benzerga A A, Besson J, Pineau A. Coalescence-Controlled Anisotropic Ductile Fracture [J]. J Engng Mater Technol, 1999, 121: 221.

    Article  Google Scholar 

  16. Gologanu M, Leblond J B, Perrin G, et al. Theoretical Models for Void Coalescence in Porous Ductile Solids. I. Coalescence “in Layers” [J]. Int J Solids Struct, 2001, 38: 5581.

    Article  Google Scholar 

  17. Gologanu M, Leblond J B, Perrin G, et al. Theoretical Models for Void Coalescence in Porous Ductile Solids. II. Coalescence “in Columns” [J]. Int J Solids Struct, 2001, 38: 5581.

    Article  Google Scholar 

  18. Pardoen T, Hutchinson J W. An Extended Model for Void Growth and Coalescence [J]. J Mech Phys Solids, 2000, 48: 2467.

    Article  Google Scholar 

  19. Tang C Y, Lee T C, Rao B. An Experimental Study of Shear Damage Using In-Situ Single Shear Test [J]. Int J Damage Mech, 2002, 11: 336.

    Google Scholar 

  20. Faleskog J, Gao X, Shih C F. Cell Model for Nonlinear Fracture Analysis – I. Micromechanics Calibration [J]. Int J Fract, 1998. 89(4): 355.

    Article  Google Scholar 

  21. Gao X, Faleskog J. Shih C F. Cell Model for Nonlinear Fracture Analysis — II. Fracture Process Calibration and Verification [J]. Int J Fract, 1998, 89(4): 375.

    Article  Google Scholar 

  22. Moussy F H. Lefebure P. Critical Damage and Ductile Fracture: Quantitative Experimental Determination [A]. Predeleanu M. eds. Proc Int Symp on Computational Methods for Predicting Material Processing Defects [C]. Amsterdam: Elsevier, 1987. 275.

  23. ZHAO Hui-juan, ZHUANG Zhuo, ZHENG Quan-shui. Test and Simulation for Large Deformed Torsion and Plastic Hardening [J]. Acta Mechanica Sinica, 2002, 34(5): 804.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-ke Huang.

Additional information

Foundation Item: Item sponsored by National Natural Science Foundation of China (50575143); Research Fund for the Doctoral Program of Higher Education (20040248005)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Jk., Dong, Xh. A new ductile fracture criterion for various deformation conditions based on microvoid model. J. Iron Steel Res. Int. 16, 92–97 (2009). https://doi.org/10.1016/S1006-706X(10)60017-9

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(10)60017-9

Key words

Navigation