Skip to main content

Micromechanical Models of Ductile Damage and Fracture

  • Living reference work entry
  • First Online:
Handbook of Damage Mechanics
  • 238 Accesses

Abstract

Two classes of micromechanics-based models of void enlargement are presented succinctly with their fundamental hypotheses and synopsis of derivation highlighted. The first class of models deals with conventional void growth, i.e., under conditions of generalized plastic flow within the elementary volume. The second class of models deals with void coalescence, i.e., an accelerated void growth process in which plastic flow is highly localized. The structure of constitutive relations pertaining to either class of models is the same but their implications are different. With this as basis, two kinds of integrated models are presented which can be implemented in a finite-element code and used in ductile fracture simulations, in particular for metal forming processes. This chapter also describes elements of material parameter identification and how to use the integrated models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • A.A. Benzerga, Micromechanics of coalescence in ductile fracture. J. Mech. Phys. Solids 50, 1331–1362 (2002)

    Article  MATH  Google Scholar 

  • A.A. Benzerga, J. Besson, Plastic potentials for anisotropic porous solids. Eur. J. Mech. 20A, 397–434 (2001)

    Article  Google Scholar 

  • A.A. Benzerga, J. Besson, R. Batisse, A. Pineau, Synergistic effects of plastic anisotropy and void coalescence on fracture mode in plane strain. Model. Simul. Mater. Sci. Eng. 10, 73–102 (2002a)

    Article  Google Scholar 

  • A.A. Benzerga, J. Besson, A. Pineau, Coalescence – controlled anisotropic ductile fracture. J. Eng. Mater. Tech. 121, 221–229 (1999)

    Article  Google Scholar 

  • A.A. Benzerga, J. Besson, A. Pineau, Anisotropic ductile fracture. Part II: theory. Acta Mater. 52, 4639–4650 (2004)

    Article  Google Scholar 

  • A.A. Benzerga, J.-B. Leblond, Ductile fracture by void growth to coalescence. Adv. Appl. Mech. 44, 169–305 (2010)

    Article  Google Scholar 

  • A.A. Benzerga, J.-B. Leblond, Effective yield criterion accounting for microvoid coalescence. J. Appl. Mech. 81, 031009 (2014)

    Google Scholar 

  • A.A. Benzerga, V. Tvergaard, A. Needleman, Size effects in the Charpy V-notch test. Int. J. Fract. 116, 275–296 (2002b)

    Article  Google Scholar 

  • F.M. Beremin, Experimental and numerical study of the different stages in ductile rupture: application to crack initiation and stable crack growth, in Three-Dimensional Constitutive relations of Damage and Fracture, ed. by S. Nemat-Nasser (Pergamon press, North Holland, 1981), pp. 157–172

    Google Scholar 

  • J. Besson, Continuum models of ductile fracture: a review. Int. J. Damage Mech. 19, 3–52 (2010)

    Article  Google Scholar 

  • O. Cazacu, B. Plunkett, F. Barlat, Orthotropic yield criterion for hexagonal closed packed metals. Int. J. Plasticity 22, 1171–1194 (2006)

    Article  MATH  Google Scholar 

  • C. Chu, A. Needleman, Void nucleation effects in biaxially stretched sheets. J. Eng. Mater. Technol. 102, 249–256 (1980)

    Article  Google Scholar 

  • M. Gologanu, Etude de quelques problèmes de rupture ductile des métaux. Ph.D. thesis, Université Paris 6, 1997

    Google Scholar 

  • M. Gologanu, J.-B. Leblond, J. Devaux, Approximate models for ductile metals containing non-spherical voids – case of axisymmetric prolate ellipsoidal cavities. J. Mech. Phys. Solids 41(11), 1723–1754 (1993)

    Article  MATH  Google Scholar 

  • M. Gologanu, J.-B. Leblond, J. Devaux, Approximate models for ductile metals containing non-spherical voids – case of axisymmetric oblate ellipsoidal cavities. J. Eng. Mater. Technol. 116, 290–297 (1994)

    Article  Google Scholar 

  • M. Gologanu, J.-B. Leblond, G. Perrin, J. Devaux, Recent extensions of Gurson’s model for porous ductile metals, in Continuum Micromechanics, ed. by P. Suquet. CISM Lectures Series (Springer, New York, 1997), pp. 61–130

    Chapter  Google Scholar 

  • A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: part I-yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)

    Article  Google Scholar 

  • G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21(1), 31–48 (1985)

    Article  Google Scholar 

  • M. Kailasam, P. Ponte Castaneda, A general constitutive theory for linear and nonlinear particulate media with microstructure evolution. J. Mech. Phys. Solids 46(3), 427–465 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • S.M. Keralavarma, A.A. Benzerga, An approximate yield criterion for anisotropic porous media. Comptes Rendus Mecanique 336, 685–692 (2008)

    Article  MATH  Google Scholar 

  • S.M. Keralavarma, A.A. Benzerga, A constitutive model for plastically anisotropic solids with non-spherical voids. J. Mech. Phys. Solids 58, 874–901 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • J. Koplik, A. Needleman, Void growth and coalescence in porous plastic solids. Int. J. Solids. Struct. 24(8), 835–853 (1988)

    Article  Google Scholar 

  • D. Lassance, D. Fabrègue, F. Delannay, T. Pardoen, Micromechanics of room and high temperature fracture in 6xxx Al alloys. Progr. Mater. Sci. 52, 62–129 (2007)

    Article  Google Scholar 

  • J.-B. Leblond, M. Gologanu, External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void. Compt Rendus Mecanique 336, 813–819 (2008)

    Article  MATH  Google Scholar 

  • B.J. Lee, M.E. Mear, Axisymmetric deformation of power–law solids containing a dilute concentration of aligned spheroidal voids. J. Mech. Phys. Solids 40(8), 1805–1836 (1992)

    Article  Google Scholar 

  • K. Madou, J.-B. Leblond, A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids – I: limit-analysis of some representative cell. J. Mech. Phys. Solids 60, 1020–1036 (2012a)

    Article  MathSciNet  Google Scholar 

  • K. Madou, J.-B. Leblond, A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids – II: Determination of yield criterion parameters. J. Mech. Phys. Solids 60, 1037–1058 (2012b)

    Article  MathSciNet  Google Scholar 

  • K. Madou, J.-B. Leblond, Numerical studies of porous ductile materials containing arbitrary ellipsoidal voids – I: Yield surfaces of representative cells. Eur. J. Mech. 42, 480–489 (2013)

    Google Scholar 

  • K. Madou, J.-B. Leblond, Numerical studies of porous ductile materials containing arbitrary ellipsoidal voids – II: Evolution of the magnitude and orientation of the void axes. Eur. J. Mech. Volume 42, 490–507 (2013)

    Google Scholar 

  • V. Monchiet, O. Cazacu, E. Charkaluk, D. Kondo, Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids. Int. J. Plasticity 24, 1158–1189 (2008)

    Article  MATH  Google Scholar 

  • V. Monchiet, C. Gruescu, E. Charkaluk, D. Kondo, Approximate yield criteria for anisotropic metals with prolate or oblate voids. Comptes Rendus Mecanique 334, 431–439 (2006)

    Article  MATH  Google Scholar 

  • J. Pan, M. Saje, A. Needleman, Localization of deformation in rate sensitive porous plastic solids. Int. J. Fracture 21, 261–278 (1983)

    Article  Google Scholar 

  • T. Pardoen, J.W. Hutchinson, An extended model for void growth and coalescence. J. Mech. Phys. Solids 48, 2467–2512 (2000)

    Article  MATH  Google Scholar 

  • J.B. Stewart, O. Cazacu, Analytical yield criterion for an anisotropic material containing spherical voids and exhibiting tension-compression asymmetry. Int. J. Solids. Struct. 48, 357–373 (2011)

    Article  MATH  Google Scholar 

  • C. Tekoglu, J.-B. Leblond, T. Pardoen, A criterion for the onset of void coalescence under combined tension and shear. J. Mech. Phys. Solids 60, 1363–1381 (2012)

    Article  Google Scholar 

  • P.F. Thomason, Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids. Acta Metall. 33, 1079–1085 (1985)

    Article  Google Scholar 

  • V. Tvergaard, Influence of voids on shear band instabilities under plane strain conditions. Int. J. Fracture 17, 389–407 (1981)

    Article  Google Scholar 

  • V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 32, 157–169 (1984)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by NPRP grant No 4-1411-2-555 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the author. Partial support from the National Science Foundation (Grant Number DMR-0844082) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Amine Benzerga .

Editor information

Editors and Affiliations

Appendices

Appendix A. GLD Criterion Parameters

There are six parameters which depend on the microstructural variables f and w: C, g, k , η, and α 2, listed by order of appearance in criterion (17), and α 1, which mainly appears in the evolution law of w:

$$ g=0\kern1.5em \left(\mathrm{p}\right);\kern2em g=\frac{e_2^3}{\sqrt{1-{e}_2^2}}=f\frac{e_1^3}{\sqrt{1-{e}_1^2}}=f\frac{{\left(1-{w}^2\right)}^{\frac{3}{2}}}{w}\left(\mathrm{o}\right) $$
(53)

where (p) and (o) are a shorthand notation for prolate and oblate, respectively. We recall that e 1 and e 2 are the eccentricities of the void and the outer boundary of the RVE, respectively. Both are implicit functions of f and w.

$$ \kappa =\left\{\begin{array}{ll}{\left[\frac{1}{\sqrt{3}}+\frac{1}{\mathrm{In}\;f}\left(\left(\sqrt{3}-2\right)\mathrm{In}\frac{e_1}{e_2}\right)\right]}^{-1}\hfill & \left(\mathrm{p}\right)\hfill \\ {}\frac{3}{2}{\left[1+\frac{\left({g}_f-{g}_1\right)+\frac{4}{5}\left({g}_f^{5/2}-{g}_1^{5/2}\right)-\frac{3}{5}\left({g}_f^5-{g}_1^5\right)}{\mathrm{In}\frac{g_f}{g_1}}\right]}^{-1}\hfill & \left(\mathrm{o}\right)\hfill \end{array}\right. $$
(54)

where

$$ {g}_f\equiv \frac{g}{g+f},\kern2em {g}_1\equiv \frac{g}{g+1} $$
$$ {\alpha}_2=\left\{\begin{array}{ll}\frac{\left(1+{e}_2^2\right)}{{\left(1+{e}_2^2\right)}^2+2{\left(1-{e}_2^2\right)}^2}\hfill & \left(\mathrm{p}\right)\hfill \\ {}\frac{\left(1-{e}_2^2\right)\left(1-2{e}_2^2\right)}{{\left(1-2{e}_2^2\right)}^2+2\left(1-{e}_2^2\right)}\hfill & \left(\mathrm{o}\right)\hfill \end{array}\right. $$
(55)
$$ \begin{array}{l}\eta =-\frac{2}{3}\frac{\kappa {Q}^{*}\left(g+1\right)\left(g+f\right)\mathrm{sh}}{{\left(g+1\right)}^2+{\left(g+f\right)}^2+\left(g+1\right)\left(g+f\right)\left[\kappa {H}^{*}\mathrm{sh}-2\mathrm{ch}\right]},\\ {}C=-\frac{2}{3}\frac{\kappa \left(g+1\right)\left(g+f\right)\mathrm{sh}}{\left({Q}^{*}+\frac{3}{2}\eta {H}^{*}\right)\eta },\kern2em \mathrm{sh}\equiv \sinh \left(\kappa {H}^{*}\right),\kern2em \mathrm{ch}\equiv \cosh \left(\kappa {H}^{*}\right)\end{array} $$
(56)

where H* = 2( α 1 – α 2) and Q * ≡ (1 – f).

$$ {\alpha}_1=\left\{\begin{array}{ll}\left[{e}_1-\left(1-{e}_1^2\right){ \tanh}^{-1}{e}_1\right]/\left(2{e}_1^3\right)\hfill & \left(\mathrm{p}\right)\hfill \\ {}\left[-{e}_1\left(1-{e}_1^2\right)+\sqrt{1-{e}_1^2}{ \sin}^{-1}{e}_1\right]/\left(2{e}_1^3\right)\hfill & \left(\mathrm{o}\right)\hfill \end{array}\right. $$
(57)

Finally, the parameter α G1 which enters the evolution law (20) of the void shape parameter is given by

$$ {\alpha}_1^{\mathrm{G}}=\left\{\begin{array}{ll}1/\left(3-{e}_1^2\right)\hfill & \left(\mathrm{p}\right)\hfill \\ {}\left(1-{e}_1^2\right)/\left(3-2{e}_1^2\right)\hfill & \left(\mathrm{o}\right)\hfill \end{array}\right. $$
(58)

Appendix B. KB Criterion Parameters

There are six parameters which depend on the microstructural variables f and w and on the anisotropy tensor : C, g, κ, η, and α 2, listed by order of appearance in criterion (23) and α 1, which appears in the evolution law of W:

$$ g=0\kern2em \left(\mathrm{p}\right);\kern1.5em g=\frac{e_2^3}{\sqrt{1-{e}_2^2}}=f\frac{e_1^3}{\sqrt{1-{e}_1^2}}=f\frac{{\left(1-{w}^2\right)}^{\frac{3}{2}}}{w}\kern1em \left(\mathrm{o}\right) $$
(59)

We recall that e 1 and e 2 are the eccentricities of the void and the outer boundary of the RVE, respectively. Both are implicit functions of f and w. Next, the full expression of κ was provided by Keralavarma and Benzerga (2010) but can be simplified into

$$ \kappa =\left\{\begin{array}{ll}\frac{3}{h}{\left\{1+\frac{h_{\mathrm{t}}}{h^2\mathrm{In}\;f}\mathrm{In}\frac{1-{e}_2^2}{1-{e}_1^2}\right\}}^{-1/2}\hfill & \left(\mathrm{p}\right)\hfill \\ {}\frac{3}{h}{\left\{1+\frac{\left({g}_f-g1\right)+\frac{4}{5}\left({g}_f^{5/2}-{g}_1^{5/2}\right)-\frac{3}{5}\left({g}_f^5-{g}_1^5\right)}{\mathrm{In}\left({g}_f/{g}_1\right)}\right\}}^{-1}\hfill & \left(\mathrm{o}\right)\hfill \end{array}\right. $$
(60)

where shorthand notations are used for

$$ {g}_f\equiv \frac{g}{g+f},\kern2em {g}_1\equiv \frac{g}{g+1} $$
$$ {\alpha}_2=\left\{\begin{array}{ll}\frac{\left(1+{e}_2^2\right)}{{\left(1+{e}_2^2\right)}^2+2\left(1-{e}_2^2\right)}\hfill & \left(\mathrm{p}\right)\hfill \\ {}\frac{\left(1-{e}_2^2\right)\left(1-2{e}_2^2\right)}{{\left(1-2{e}_2^2\right)}^2+2\left(1-{e}_2^2\right)}\hfill & \left(\mathrm{o}\right)\hfill \end{array}\right. $$
(61)
$$ \begin{array}{l}\eta =-\frac{2}{3{h}_{\mathrm{q}}}\frac{\kappa {Q}^{*}\left(g+1\right)\left(g+f\right)\mathrm{sh}}{{\left(g+1\right)}^2+{\left(g+f\right)}^2+\left(g+1\right)\left(g+f\right)\left[\kappa {H}^{*}\mathrm{sh}-2\mathrm{ch}\right]},\\ {}C=-\frac{2}{3}\frac{\kappa \left(g+1\right)\left(g+f\right)\mathrm{sh}}{\left({Q}^{*}+\frac{3}{2}{h}_{\mathrm{q}}\eta {H}^{*}\right)\eta },\kern2em \mathrm{sh}\equiv \sinh \left(\kappa {H}^{*}\right),\kern2em \mathrm{ch}\equiv \cosh \left(\kappa {H}^{*}\right)\end{array} $$
(62)

where \( {H}^{*}\equiv 2\sqrt{h_{\mathrm{q}}}\left({\alpha}_1-{\alpha}_2\right)\kern1em \mathrm{and}\kern1em {Q}^{*}\equiv \sqrt{h_{\mathrm{q}}}\left(1-f\right). \)

$$ {\alpha}_1=\left\{\begin{array}{ll}\left[{e}_1-\left(1-{e}_1^2\right){ \tanh}^{-1}{e}_1\right]/\left(2{e}_1^3\right)\hfill & \left(\mathrm{p}\right)\hfill \\ {}\left[-{e}_1\left(1-{e}_1^2\right)+\sqrt{1-{e}_1^2}{ \sin}^{-1}{e}_1\right]/\left(2{e}_1^3\right)\hfill & \left(\mathrm{o}\right)\hfill \end{array}\right. $$
(63)

Note that the expressions of α 2 and α 1 are identical to those given by Gologanu et al. (1997) for isotropic matrices.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Benzerga, A.A. (2013). Micromechanical Models of Ductile Damage and Fracture. In: Voyiadjis, G. (eds) Handbook of Damage Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8968-9_38-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8968-9_38-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8968-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics