Skip to main content
Log in

Influence of Frequency and Bias Current on Asymmetrical GMI Effect in Co71.8Fe4.9Nb0.8Si7.5B15 Amorphous Glass-Covered Wires

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The Co71.8Fe4.9Nb0.8Si7.5B15 amorphous glass-covered wires (AGCW) are prepared by the Taylor-Ulitovsky technique. The frequency dependence of asymmetrical giant magneto-impedance (AGMI) effect in amorphous glass-covered wires annealed by 70 mA DC current is here presented. The resistance R and the reactance X have been measured, respectively. The real part R and the imaginary part X of impedance play an important role at high frequency and low frequency, respectively. The influence of DC bias current from Ib = 0 mA to Ib = 5 mA at 30 MHz on the GMI effect in the glass-covered wires annealed by 70 mA DC current is investigated. The asymmetry becomes the largest around Ib=1 mA, and finally decreases for the larger bias current Ib=5 mA. The maximum ΔZ/Z ratio of 310% is observed at 58 MHz under 1 mA bias current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Panina L V, Mohri K. Magneto-Impedance Effect in Amorphous Wires [J]. Appl Phys Lett, 1994, 65(9): 1189.

    Article  Google Scholar 

  2. Mohri K, Uchiyama T, Panina L V. Recent Advances of Micro-Magnetic Sensors and Sensing Application [J]. Sensors and Actuators A, 1997, 59: 1.

    Article  Google Scholar 

  3. Panina L V, Mohri K. Magneto-Impedance in Multilayer Films [J]. Sensors and Actuators A, 2000, 81: 71.

    Article  Google Scholar 

  4. Honkura Y. Development of Amorphous Wire Type MI Sensors for Automobile Use [J]. J Magn Magn Mater, 2002, 249 (1-2): 375.

    Article  Google Scholar 

  5. Panina L V, Makhnovskiy D P, Mohri K. Magnetoimpedance in Amorphous Wires and Multifunctional Applications: From Sensors to Tunable Artificial Microwave Materials [J]. J Magn Magn Mater, 2004, 272: 1452.

    Article  Google Scholar 

  6. Valenzuela R, Vazquez M, Hernando A. A Position Sensor Based on Magnetoimpedance [J]. J Appl Phys, 1996, 79(8): 6549.

    Article  Google Scholar 

  7. Velázquez J, Váazquez M, Chen D X, et al. Giant Magnetoimpedance in Nonmagnetostrictive Amorphous Wires [J]. Phys Rev B, 1994, 50: 16737.

    Article  Google Scholar 

  8. Vazquez M, Chen D X. The Magnetization Reversal Process in Amorphous Wires [J]. IEEE Trans Magn, 1995, 31: 1229.

    Article  Google Scholar 

  9. Wiesner H, Schneider J. Magnetic Properties of Amorphous Fe-P Alloys Containing Ga, Ge and As [J]. Phys Stat Sol, 1974, 26(A): 71.

    Article  Google Scholar 

  10. Beach R S, Smith N, Piatt C L, et al. Magneto-Impedance Effect in NiFe Plated Wire [J]. Appl Phys Lett, 1996, 68: 2753.

    Article  Google Scholar 

  11. Kraus L, Frait Z, Pirota K R, et al. Giant Magneto-Impedance in Glass-Covered Amorphous Microwires [J]. J Magn Magn Mater, 2003, 254: 399.

    Article  Google Scholar 

  12. Phan M H, Yu S C. Origin of Asymmetrical Magnetoimpedance in a Co-Based Amorphous Microwire due to DC Bias Current [J]. J Appl Phys Lett, 2003, 83: 2871.

    Article  Google Scholar 

  13. Makhnovskiy D P, Panina L V, Mapps D J. Asymmetrical Magnetoimpedance in As-Cast CoFeSiB Amorphous Wires due to AC Bias [J]. J Appl Phys Lett, 2000, 77: 121.

    Article  Google Scholar 

  14. Panina L V. Asymmetrical Giant Magneto-Impedance (AGMI) in AmorphousWires [J]. J Magn Magn Mater, 2002, 249: 278.

    Article  Google Scholar 

  15. Ciureanu P, Khalil I, Melo L G C, et al. Stress-Induced Asymmetric Magneto-Impedance in Melt-Extracted Co-Rich Amorphous Wires [J]. J Magn Magn Mater, 2002, 249: 305.

    Article  Google Scholar 

  16. Makhnovskiy D P, Panina L V, Mapps D J. Field-Dependent Surface Impedance Tensor in Amorphous Wires With Two Types of Magnetic Anisotropy: Helical and Circumferential [J]. Phys Rev B, 2001, 63: 144424.

    Article  Google Scholar 

  17. Makhnovskiy D P, Panina L V, Mapps D J. Surface Impedance Tensor in Amorphous Wires With Helical Anisotropy: Magnetic Hysteresis and Asymmetry [J]. J Appl Phys, 2001, 89: 7224

    Article  Google Scholar 

  18. Garcia C, Gonzalez J, Chizhik A. Asymmetrical Magneto-Impedance Effect in Fe-Rich Amorphous Wires [J]. J Appl Phys, 2004, 95: 6756.

    Article  Google Scholar 

  19. Panina L V, Mohri K. Mechanism of Asymmetrical Magneto-impedance in Amorphous Wires [J]. J Appl Phys, 1999, 85: 5444.

    Article  Google Scholar 

  20. Chiriac H, Pop G, Barariu F, et al. Magnetic Behavior of Amorphous Wires Covered by Glass [J]. J Appl Phys, 1994, 75: 6949.

    Article  Google Scholar 

  21. Chiriac H, Ōvári T A. Amorphous Glass-Covered Magnetic Wires: Preparation, Properties, Applications [J]. Prog Mater Sci, 1996, 40(5): 333.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Chen.

Additional information

Foundation Item: Item Sponsored by the National High-Tech Research and Development Program of China (2002AA302601) and the National Key Technologies Research and Development Program of China (2004BA310A51)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Li, Dr., Lu, Zc. et al. Influence of Frequency and Bias Current on Asymmetrical GMI Effect in Co71.8Fe4.9Nb0.8Si7.5B15 Amorphous Glass-Covered Wires. J. Iron Steel Res. Int. 15, 91–94 (2008). https://doi.org/10.1016/S1006-706X(08)60039-4

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(08)60039-4

Key words

Navigation