Skip to main content
Log in

Characteristics of wave amplitude and currents in South China Sea induced by a virtual extreme tsunami

  • Feature Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

This paper investigates the potential extreme tsunami hazards of the worst case scenario of the magnitude M w = 9.30 in South China Sea (SCS) as the Manila Trench is becoming one of the most hazardous tsunami source regions. Using nonlinear shallow water equations model, the time series of surface elevation, arrival time, spatial distributions of maximum wave amplitude and velocity distribution are presented. The characteristics of wave and currents are analyzed. The numerical results indicate that most of the energy of tsunami wave distributes in central and north part of SCS. The offshore regions around SCS will be influenced significantly by the tsunami currents generated by an earthquake in the Manila subduction zone. The maximum wave amplitude near Guangdong Province, Hainan Island, and Taiwan Island exceeds 4 m and velocities at the majority of measured locations near coast exceeds 2 m/s. Nested grid with high resolution is used to study the impacts of the tsunami on Hainan Island, Taiwan Island, and Lingding Bay. The regions with high hazard risk due to strong currents are identified. Finally, a fast tsunami warning method in SCS is developed and discussed, which can provide tsunami warning information in 5 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kânoğlu U., Titov V., Bernard E. et al. Tsunamis: Bridging science, engineering and society [J]. Philosophical Transactions Royal Society A, 2015, 373(2053): 20140369.

    Article  Google Scholar 

  2. Glimsdal S., Pedersen G. K., Atakan K. et al. Propagation of the Dec. 26, 2004, Indian Ocean Tsunami: Effects of dispersion and source characteristics [J]. International Journal of Fluid Mechanics Research, 2006, 33(1): 15–43.

    Article  Google Scholar 

  3. Mori N., Takahashi T., Yasuda T. et al. Survey of 2011 Tohoku earthquake tsunami inundation and run-up [J]. Geophysical Research Letters, 2011, 38(7): 178–187.

    Article  Google Scholar 

  4. Popinet S. Adaptive modelling of long-distance wave propagation and fine-scale flooding during the Tohoku tsunami [J]. Natural Hazards and Earth System Science, 2012, 12(4): 1213–1227.

    Article  Google Scholar 

  5. Synolakis C., Kânoğlu U. The Fukushima accident was preventable [J]. Philosophical Transactions Royal Society A, 2015, 373(2053): 20140379.

    Article  Google Scholar 

  6. Kirby S., Geist E., Lee W. H. K. et al. Great earthquake tsunami sources: Empiricism and beyond [C]. USGS Tsunami Sources Workshop. Menlo Park, California, USA, 2006.

    Google Scholar 

  7. Liu P. L. F., Wang X., Salisbury A. J. Tsunami hazard and early warning system in South China Sea [J]. Journal of Asian Earth Sciences, 2009, 36(1): 2–12.

    Article  Google Scholar 

  8. Glimsdal S., Pedersen G. K., Harbitz C. B. et al. Dispersion of tsunamis: Does it really matter [J]. Natural Hazards and Earth System Sciences, 2013, 13(6): 1507–1526.

    Article  Google Scholar 

  9. Kirby J. T., Shi F., Tehranirad B. et al. Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects [J]. Ocean Modelling, 2013, 62: 39–55.

    Article  Google Scholar 

  10. Grilli S. T., Harris J. C., Bakhsh T. S. T. et al. Numerical simulation of the 2011 Tohoku tsunami based on a new transient FEM co-seismic source: Comparison to far-and near-field observations [J]. Pure and Applied Geophysics, 2013, 170(6–8): 1333–1359.

    Article  Google Scholar 

  11. Zhao X., Liu H., Wang B. L. Scenarios of local tsunamis in China seas by Boussinesq model [J]. China Ocean Engineering, 2014, 28(3): 303–316.

    Article  Google Scholar 

  12. Ren Z. Y., Zhao X., Liu H. Dispersion effects on tsunami propagation in South China Sea [J]. Journal of Earthquake and Tsunami, 2015, 9(5): 1540001.

    Article  Google Scholar 

  13. Zhao X., Liu H., Wang B. Evolvement of tsunami waves on the continental shelves with gentle slope in the China Seas [J]. Theoretical and Applied Mechanics Letters, 2013, 3(3): 35–39.

    Google Scholar 

  14. Matsuyama M., Ikeno M., Sakakiyama T. et al. A study of tsunami wave fission in an undistorted experiment [J]. Pure and Applied Geophysics, 2007, 164(2): 617–631.

    Article  Google Scholar 

  15. Tissier M., Bonneton P., Marche F. et al. Nearshore dynamics of tsunami-like undular bores using a fully nonlinear Boussinesq model [J]. Journal of Coastal Research, 2013, 99(1): 603–607.

    Google Scholar 

  16. Zhao X., Liu H., Wang B. Tsunami waveforms and runup of undular bores in coastal water [J]. Journal of Engineering Mechanics, 2016, 142(7): 06016003.

    Article  Google Scholar 

  17. Fritz H. M., Phillips D. A., Okayasu A. et al. The 2011 Japan tsunami current velocity measurements from survivor videos at Kesennuma Bay using LiDAR [J]. Geophysical Research Letters, 2012, 39: L00G23.

    Article  Google Scholar 

  18. Lynett P. J., Borrero J. C., Weiss R. et al. Observations and modeling of tsunami-induced currents in ports and harbors [J]. Earth and Planetary Science Letters, 2012, 327: 68–74.

    Article  Google Scholar 

  19. Lynett P. J., Borrero J., Son S. et al. Assessment of the tsunami-induced current hazard [J]. Geophysical Research Letters, 2014, 41(6): 2048–2055.

    Article  Google Scholar 

  20. Admire A. R., Dengler L. A., Crawford G. B. et al. Observed and modeled currents from the Tohoku-oki, Japan and other recent tsunamis in northern California [J]. Pure and Applied Geophysics, 2014, 171(12): 3385–3403.

    Article  Google Scholar 

  21. Arcos M. E. M., Leveque R. J. Validating velocities in the GeoClaw tsunami model using observations near Hawaii from the 2011 Tohoku tsunami [J]. Pure and Applied Geophysics, 2015, 172(3): 849–867.

    Article  Google Scholar 

  22. Borrero J. C., Lynett P. J., Kalligeris N. Tsunami currents in ports [J]. Philosophical Transactions Royal Society A, 2015, 373(2053): 20140372.

    Article  Google Scholar 

  23. Behrens J., Dias F. New computational methods in tsunami science [J]. Philosophical Transactions Royal Society A, 2015, 373(2053): 20140382.

    Article  MathSciNet  Google Scholar 

  24. Ren Z., Liu H., Wang B. et al. An investigation on multibuoy inversion method for tsunami warning system in South China Sea [J]. Journal of Earthquake and Tsunami, 2014, 8(3): 1440004.

    Article  Google Scholar 

  25. Liang D., Zhang J., Wang J. An optimisation exercise for positioning the DART buoys in the South China Sea [C]. The Twenty-fifth International Offshore and Polar Engineering Conference. Kona, Hawaii, USA, 2015.

    Google Scholar 

  26. Lin S. C., Wu T. R., Yen E. et al. Development of a tsunami early warning system for the South China Sea [J]. Ocean Engineering, 2015, 100: 1–18.

    Article  Google Scholar 

  27. Okada Y. Internal deformation due to shear and tensile faults in a half-space [J]. Bulletin of the Seismological Society of America, 1992, 82(2): 1018–1040.

    Google Scholar 

  28. LeVeque R. J., George D. L., Berger M. J. Tsunami modelling with adaptively refined finite volume methods [J]. Acta Numerica, 2011, 20: 211–289.

    Article  MathSciNet  Google Scholar 

  29. Ren Z. Y., Wang B. L., Fan T. T. et al. Numerical analysis of impacts of 2011 Japan Tohoku tsunami on China Coast [J]. Journal of Hydrodynamics, 2013, 25(4): 580–590.

    Article  Google Scholar 

  30. Lin C. H. Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan [J]. Tectonophysics, 2000, 324(3): 189–201.

    Article  MathSciNet  Google Scholar 

  31. Wu T. R., Huang H. C. Modeling tsunami hazards from Manila trench to Taiwan [J]. Journal of Asian Earth Sciences, 2009, 36(1): 21–28.

    Article  MathSciNet  Google Scholar 

  32. Megawati K., Shaw F., Sieh K. et al. Tsunami hazard from the subduction megathrust of the South China Sea: Part I. Source characterization and the resulting tsunami [J]. Journal of Asian Earth Sciences, 2009, 36(1): 13–20.

    Article  Google Scholar 

  33. Nguyen P. H., Bui Q. C., Vu P. H. et al. Scenario-based tsunami hazard assessment forthe coast of Vietnam from the Manila Trench source [J]. Physics of the Earth and Planetary Interiors, 2014, 236: 95–108.

    Article  Google Scholar 

  34. Liu Y., Shi Y., Yuen D. A. et al. Comparison of linear and nonlinear shallow wave water equations applied to tsunami waves over the China Sea [J]. Acta Geotechnica, 2009, 4(2): 129–137.

    Article  Google Scholar 

  35. Madsen P. A., Fuhrman D. R. Run-up of tsunamis and long waves in terms of surf-similarity [J]. Coastal Engineering, 2008, 55(3): 209–223.

    Article  Google Scholar 

  36. Wells D. L., Coppersmith K. J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement [J]. Bulletin of the seismological Society of America, 1994, 84(4): 974–1002.

    Google Scholar 

  37. Hanks T. C., Kanamori H. A moment magnitude scale [J]. Journal of Geophysical Research, 1979, 84(9): 2348–2350.

    Article  Google Scholar 

  38. Yen Y. T., Ma K. F. Source-scaling relationship for M 4.6-8.9 earthquakes, specifically for earthquakes in the collision zone of Taiwan [J]. Bulletin of the Seismological Society of America, 2011, 101(2): 464–481.

    Article  Google Scholar 

  39. Reymond D., Okal E. A., Hébert H. et al. Rapid forecast of tsunami wave heights from a database of pre-computed simulations, and application during the 2011 Tohoku tsunami in French Polynesia [J]. Geophysical Research Letters, 2012, 39(11): 117–128.

    Article  Google Scholar 

  40. Jamelot A., Reymond D. New tsunami forecast tools for the French Polynesiatsunami warning system part II: Numerical modelling and tsunami height estimation [J]. Pure and Applied Geophysics, 2015, 172(3): 805–819.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Liu  (刘桦).

Additional information

Project supported by the National Natural Science Foundation of China (Grant Nos. 11632012, 51379123).

Biography: Zhi-yuan Ren (1986-), Male, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Zy., Zhao, X., Wang, Bl. et al. Characteristics of wave amplitude and currents in South China Sea induced by a virtual extreme tsunami. J Hydrodyn 29, 377–392 (2017). https://doi.org/10.1016/S1001-6058(16)60747-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(16)60747-3

Key words

Navigation