Skip to main content
Log in

A cavitation aggressiveness index within the Reynolds averaged Navier Stokes methodology for cavitating flows

  • Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The paper proposes a methodology within the Reynolds averaged Navier Stokes (RANS) solvers for cavitating flows capable of predicting the flow regions of bubble collapse and the potential aggressiveness to material damage. An aggressiveness index is introduced, called cavitation aggressiveness index (CAI) based on the total derivative of pressure which identifies surface areas exposed to bubble collapses, the index is tested in two known cases documented in the open literature and seems to identify regions of potential cavitation damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BRENNEN C. E. Cavitation and bubble dynamics[M]. New York, USA: Oxford University Press, 1995.

    MATH  Google Scholar 

  2. LEIGHTON T. G. The acoustic bubble[M]. London, UK: Academic Press, 1994.

    Google Scholar 

  3. HAMMITT F. G. Cavitation and multiphase flow phenomena[M]. New York, USA: McGraw-Hill, 1980.

    Google Scholar 

  4. KIM K. H., CHAHINE G. and FRANC J. P. et al. Advanced experimental and numerical techniques for cavitation erosion prediction[M]. Dordrecht, The Netherlands: Springer, 2014, 3–20.

    Book  Google Scholar 

  5. KEDRINSKII V. K. Bubble cluster, cumulative jets, and cavitation erosion[J]. Journal of Applied Mechanics and Technical Physics, 1996, 37(4): 476–483.

    Article  MathSciNet  Google Scholar 

  6. PATELLA R. F., CHALLIER G. and REBOUD J. L. Cavitation erosion mechanism: numerical simulations of the interaction between pressure waves and solid boundaries[C]. CAV2001: Fourth International Symposium on Cavitation. Pasadena, CA, USA, 2001.

    Google Scholar 

  7. PATELLA F. R., CHOFFAT T. and REBOUD J.-L. et al. Mass loss simulation in cavitation erosion: Fatigue criterion approach[J]. Wear, 2013, 300(1–2): 205–215.

    Article  Google Scholar 

  8. PATELLA R. F., ARCHER A. and FLAGEUL C. Numerical and experimental investigations on cavitation erosion[C]. 26th IAHR Symposium on Hydraulic Machinery and Systems. Beijing, China, 2012.

    Google Scholar 

  9. PATELLA R. F., REBOUD J. L. and ARCHER A. Cavitation damage measurement by 3D laser profilometry[J]. Wear, 2000, 246(1–2): 59–67.

    Article  Google Scholar 

  10. FRANC J. P., MICHEL J. M. Fundamentals of cavitation[M]. New York, USA: Springer-Verlag, 2004, 328.

    MATH  Google Scholar 

  11. DULAR M., STOFFEL B. and ŠIROK B. Development of a cavitation erosion model[J]. Wear, 2006, 261(5–6): 642–655.

    Article  Google Scholar 

  12. DULAR M., COUTIER-DELGOSHA O. Numerical modelling of cavitation erosion[J]. International Journal for Numerical Methods in Fluids, 2009, 61(12): 1388–1410.

    Article  Google Scholar 

  13. TERWISGA T. V., ZIRU L. and FITZSIMMONS P. et al. Cavitation erosion-A review of physical mechanisms and erosion risk models[C]. Proceedings of the 7th International Symposium on Cavitation. Ann Arbor, Michigan, USA, 2009.

    Google Scholar 

  14. LI Z. R. Assessment of cavitation erosion with a multiphase Reynolds-averaged Navier-Stokes method[D]. Doctoral Thesis, Delft, The Netherlands: Delft University of Technology, 2012.

    Google Scholar 

  15. LI Z., TERWISGA T. J. C. On the capability of a RANS method to assess the cavitation erosion risk on a hydrofoil[C]. 8th International Symposium on Cavitation (CAV). Singapore, 2012.

    Book  Google Scholar 

  16. LE Q., FRANC J. P. and MICHEL J. M. Partial cavities: Global behavior and mean pressure distribution[J]. Journal of Fluids Engineering, 1993, 115(2): 243–248.

    Article  Google Scholar 

  17. FRANK T., LIFANTE C. and JEBAUER S. et al. CFD simulation of cloud and tip vortex cavitation on hydrofoils[C]. 6th International Conference on Multiphase Flow (ICMF 2007). Leipzig, Germany, 2007.

    Google Scholar 

  18. FRANC J. P., RIONDET M. and KARIMI A. et al. Material and velocity effects on cavitation erosion pitting[J]. Wear, 2012, 274(3): 248–259.

    Article  Google Scholar 

  19. GAVAISES M., VILLA F. and KOUKOUVINIS P. et al. Visualisation and LES simulation of cavitation cloud formation and collapse in an axisymmetric geometry[J]. International Journal of Multiphase Flow, 2015, 68: 14–26.

    Article  Google Scholar 

  20. KOUKOUVINIS P., BERGELES G. and GAVAISES M. A new methodology for estimating cavitation erosion: Application on a high speed cavitation rig[C]. 6th European Conference on Computational Fluid Dynamics. Barcelona, Spain, 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gavaises.

Additional information

Biography: KOUKOUVINIS P. (1986-), Male, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koukouvinis, P., Bergeles, G. & Gavaises, M. A cavitation aggressiveness index within the Reynolds averaged Navier Stokes methodology for cavitating flows. J Hydrodyn 27, 579–586 (2015). https://doi.org/10.1016/S1001-6058(15)60519-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(15)60519-4

Key words

Navigation