Skip to main content

Numerical Simulation of Cavitating Flows in Complex Geometries

  • Chapter
  • First Online:
Cavitation Instabilities and Rotordynamic Effects in Turbopumps and Hydroturbines

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 575))

  • 1157 Accesses

Abstract

The present contribution focusses on numerical simulation of cavitating flows in complex geometries. We consider compressible flows and cavitation models assuming a homogeneous barotropic flow behavior. Different numerical issues are analyzed and possible solutions are presented and validated. Finally, an application to the simulation of the flow in a real turbopump inducer designed for liquid-propelled rockets is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barberon, T., & Helluy, P. (2005). Finite volume simulation of cavitating flows. Computers and Fluids, 34, 832858.

    Article  MATH  Google Scholar 

  • Bilanceri, M. (2011). Numerical simulations of barotropic flows in complex geometries. Ph.D. thesis, Aerospace Engineering, University of Pisa. https://etd.adm.unipi.it/theses/available/etd-03232011-094909/.

  • Bilanceri, M., Beux, F., & Salvetti, M. V. (2010). An implicit low-diffusive hll scheme with complete time linearization: Application to cavitating barotropic flows. Computers and Fluids, 39, 19902006.

    Article  MathSciNet  MATH  Google Scholar 

  • Camarri, S., Salvetti, M. V., Koobus, B., & Dervieux, A. (2004). A low diffusion MUSCL scheme for LES on unstructured grids. Computer and Fluids, 33, 1101–1129.

    Article  MATH  Google Scholar 

  • Clerc, S. (2000). Numerical simulation of the homogeneous equilibrium model for two-phase flows. Journal of Computational Physics, 161, 354–375.

    Article  MathSciNet  MATH  Google Scholar 

  • Coutier-Delgosha, O., Fortes-Patella, R., & Delannoy, Y. (2003). Numerical simulation of the unsteady behavior of cavitating flow. International Journal of Numerica Methids in Fluids, 42, 527–548.

    MATH  Google Scholar 

  • Coutier-Delgosha, O., Fortes-Patella, R., Reboud, J. L., Hakimi, N., & Hirsch, C. (2005). Numerical simulation of cavitating flow in 2D and 3D inducer geometries. International Journal for Numerical Methods in Fluids, 48, 135–167.

    Article  MATH  Google Scholar 

  • d’Agostino, L., Rapposelli, E., Pascarella, S., & Ciucci. A. (2011). A modified bubbly isenthalpic model for numerical simulation of cavitating flows. In 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, USA.

    Google Scholar 

  • Delannoy, Y., & Kueny, J. L. (1990). Cavity flow predictions based on the Euler equations (pp. 153–158). ASME Cavitation and Multiphase Flow Forum.

    Google Scholar 

  • Delis, A. I., Skeels, C. P., & Ryrie, S. C. (2000). Implicit high-resolution methods for modelling one-dimensional open channel flow. Journal of Hydraulic Research, 38(5), 369–382.

    Article  Google Scholar 

  • Farhat, S., Fezoui, L., & Lanteri, S. (1991). Computational fluid dynamics with irregular grids on the connection machine. INRIA Rapport de Recherche 1411, INRIA. http://hal.inria.fr/inria-00075149/PDF/RR-1411.pdf.

  • Goncalves, E., & Fortes, R. (2009). Numerical simulation of cavitating flows with homogeneous models. Computers and Fluids, 38, 1682–1696.

    Article  MATH  Google Scholar 

  • Guillard, H., & Viozat, C. (1999). On the behaviour of upwind schemes in the low Mach number limit. Computers and Fluids, 28, 63–86.

    Article  MathSciNet  MATH  Google Scholar 

  • Harten, A., Lax, P. D., & van Leer, B. (1983). On upstreaming differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25(1), 35–61.

    Article  MathSciNet  MATH  Google Scholar 

  • Kunz, R. F., Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., et al. (2000). A preconditioned Navier-Stokes method for two-phase flows application to cavitation prediction. Computers and Fluids, 29, 849–875.

    Article  MATH  Google Scholar 

  • Launder, B., & Spalding, D. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269–289.

    Article  MATH  Google Scholar 

  • Leveque, R. J. (1994). Numerical methods for conservation laws. Basel: Birkhäuser-Verlag.

    MATH  Google Scholar 

  • Liu, T. G., Khoo, B. C., & Xie, W. F. (2004). Isentropic one-fluid modelling of unsteady cavitating flow. Journal of Computational Physics, 201, 80–108.

    Article  MathSciNet  MATH  Google Scholar 

  • Luo, H., Baum, J. D., & Löhner, R. (2001). An accurate, fast, matrix-free implicit method for computing unsteady flows on unstructured grids. Computers and Fluids, 30, 137–159.

    Article  MATH  Google Scholar 

  • Martin, R., & Guillard, H. (1996). A second order defect correction scheme for unsteady problems. Computers and Fluids, 25(1), 9–27.

    Article  MATH  Google Scholar 

  • Meng, H., & Yang, V. (2003). A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme. Journal of Computational Physics, 189, 277304.

    Article  Google Scholar 

  • Park, S. H., & Kwon, J. H. (2003). On the dissipation mechanism of Godunov-type schemes. Journal of Computational Physics, 188(2), 524–542. doi:10.1016/S0021-9991(03)00191-8.

    Article  MathSciNet  MATH  Google Scholar 

  • Qin, Q., Song, C. C. S., & Arndt, R. E. A. (2003). A virtual single-phase natural cavitation model and its application to CAV2003 hydrofoil. In Proceedings of CAV2003—Fifth International Symposium on Cavitation, Osaka (Japan), November 2003.

    Google Scholar 

  • Roe, P. L. (1981). Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43, 357–372. doi:10.1016/0021-9991(81)90128-5.

    Article  MathSciNet  MATH  Google Scholar 

  • Rusanov, V. V. (1961). The calculation of the interaction of non-stationary shock waves with barriers. Journal of Computational Mathematics and Physics USSR, 1, 267–279.

    MathSciNet  Google Scholar 

  • Saurel, R., Cocchi, J. P., & Butler, P. B. (1999). Numerical study of cavitation in the wake of a hypervelocity underwater projectile. Journal of Propulsion and Power, 15(4), 513–522.

    Article  Google Scholar 

  • Senocak, I., & Shyy, W. (2002). A pressure-based method for turbulent cavitating flow computations. Journal of Computational Physics, 176, 363–383.

    Article  MATH  Google Scholar 

  • Sinibaldi, E. (2006). Implicit preconditioned numerical schemes for the simulation of three-dimensional barotropic flows. Ph.D. thesis, Scuola Normale Superiore di Pisa.

    Google Scholar 

  • Sinibaldi, E., Beux, F., & Salvetti, M. V. (2006). A numerical method for 3D barotropic flows in turbomachinery. Flow, Turbulence and Combustion, 76(4), 371–381.

    Article  MATH  Google Scholar 

  • Srinivasan, V., Salazar, A. J., & Saito, K. (2009). Numerical simulation of cavitation dynamics using a cavitation-induced-momentum-defect (cimd) correction approach. Applied Mathematical Modelling, 33, 15291559.

    Article  MATH  Google Scholar 

  • Toro, E. F. (1997). Riemann solvers and numerical methods for fluid dynamics. Springer.

    Google Scholar 

  • Torre, L., Pace, G., Miloro, P., Pasini, A., Cervone, A., & d’Agostino, L. (2010). Flow instabilities on a three bladed axial inducer at variable tip clearance. In: 13th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, USA.

    Google Scholar 

  • van Leer, B. (1979). Towards the ultimate conservative difference scheme V: A second-order sequel to Godunov’s method. Journal of Computational Physics, 32(1), 101–136.

    Article  Google Scholar 

  • Ventikos, Y., & Tzabiras, G. (2000). A numerical method for the simulation of steady and unsteady cavitating flows. Computers and Fluids, 29, 63–88.

    Article  MATH  Google Scholar 

  • Yee, H. C. (1987). Construction of explicit and implicit symmetric TVD schemes and their applications. Journal of Computational Physics, 68(1), 151–179.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Marco Bilanceri and François Beux are gratefully acknowledged for their precious contribution to the work presented in this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Vittoria Salvetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Salvetti, M.V. (2017). Numerical Simulation of Cavitating Flows in Complex Geometries. In: d'Agostino, L., Salvetti, M. (eds) Cavitation Instabilities and Rotordynamic Effects in Turbopumps and Hydroturbines. CISM International Centre for Mechanical Sciences, vol 575. Springer, Cham. https://doi.org/10.1007/978-3-319-49719-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49719-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49717-4

  • Online ISBN: 978-3-319-49719-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics