Skip to main content
Log in

Advances of drag-reducing surface technologies in turbulence based on boundary layer control

  • Review Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Our living environment is surrounded by turbulence, which is also a concern of the global energy consumption and the greenhouse gas emission, and the viscous force on the solid-liquid/solid-gas interface is an important part of the turbulence. Reducing friction force in turbulence to the greatest extent is becoming an urgent issue to be resolved at present. In this paper, the various state-of-the-art approaches of drag-reducing and energy-saving technologies based on the boundary layer control are reviewed, focusing on the polymer drag reduction additives, the micro-morphology, the super-hydrophobic surface, the micro air bubbles, the heating wall, the vibrant flexible wall and the composite drag reduction methods. In addition, the mechanisms of different drag reductions based on the boundary layer control and the potential applications in fluid engineering are discussed. This paper aims not only to contribute to a better understanding of drag reduction mechanisms, but also to offer new perspectives to improve the current drag-reducing and energy saving technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MOIN P., MAHESH K. Direct numerical simulation: a tool in turbulence research[J]. Annual Review of Fluid Mechanics, 1998, 30: 539–578.

    Article  MathSciNet  Google Scholar 

  2. SREENIVASAN K, R., ANTONI R. A. The phenomenology of small-scale turbulence[J]. Annual Review of Fluid Mechanics, 1997, 29: 435–472.

    Article  MathSciNet  Google Scholar 

  3. ODEN P. I., CHEN G. Y. and STEELE R. A. et al. Viscous drag measurements utilizing microfabricated canti-levers[J]. Applied Physics Letter, 1996, 68: 3814–3816.

    Article  Google Scholar 

  4. FENG B., CHEN D. and WANG J. The flow structure on drag-reduced riblet surfaces[J]. International Journal of Mechanics, 2012, 2(6): 105–112.

    Google Scholar 

  5. GRUNEBERGER R., WOLFRAM H. Drag characteristics of longitudinal and transverse riblets at low dimensionless spacings[J]. Experiments in Fluids, 2011, 50(2): 363–373.

    Article  Google Scholar 

  6. GALLAGHER J. A., THOMAS A. S. W. Turbulent boundary layer characteristics over streamwise grooves[C]. 2nd Applied Aerodynamics Conference. Seattle, USA, 1984.

    Book  Google Scholar 

  7. BHUSHAN B., JUNE Y. C. and KOCH K. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion[J]. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 2009, 367(1894): 1631–1672.

    Article  Google Scholar 

  8. ZHANG D., LUO Y. and CHEN H. Application and numerical simulation research on biomimetic drag-reducing technology for gas pipelining[J]. Oil Gas-European Magazine, 2011, 37(2): 85–90.

    Google Scholar 

  9. ZHU Y., GRANIK S. Rate-dependent slip of newtonian liquid at smooth surfaces[J]. Physical Review Letters, 2001, 87(9): 096105.

    Article  Google Scholar 

  10. BUSHNELL D. M., MOORE K. J. Drag reduction in nature[J]. Annual review of fluid mechanics, 1991, 23: 65–79.

    Article  Google Scholar 

  11. REIF W. E., DINKELACKER A. Hydrodynamics of the squamation in fast swimming sharks[J]. Neues Jahrbuch fuer Geologie and Palaeontologie, 1982, 164: 184–187.

    Google Scholar 

  12. HAO P., WONG C. and YAO Z. et al. Laminar drag reduction in hydrophobic microchannels[J]. Chemical Engineering and Technology, 2009, 32(6): 912–918.

    Article  Google Scholar 

  13. LU Si, YAO Zhao-hui and HAO Peng-fei et al. Drag reduction in ultrahydrophobic channels with micro-nano structured surfaces[J]. Science China-Physics, Mechanics and Astronomy, 2010, 53(7): 1298–1305.

    Article  Google Scholar 

  14. LV C., YANG C. and HAO P. et al. Sliding of water droplets on microstructured hydrophobic surfaces[J]. Langmuir, 2010, 26(11): 8704–8708.

    Article  Google Scholar 

  15. YANG Cheng-wei, HE Feng and HAO Peng-fei. The apparent contact angle of water droplet on the micro-structured hydrophobic surface[J]. Science China-Chemistry, 2010, 53(4): 912–916.

    Article  Google Scholar 

  16. FISH F. E. The myth and reality of Gray’s paradox: Implication of dolphin drag reduction for technology[J]. Bioinspiration and Biomimetics, 2006, 1(2): 17–25.

    Article  Google Scholar 

  17. FISH F. E., HUI C. A. Dolphin swimming–a review[J]. Mammal Review, 1991, 21(4): 181–195.

    Article  Google Scholar 

  18. PAVLOV V. V. Dolphin skin as a natural anisotropic compliant wall[J]. Bioinspiration and Biomimetics, 2006, 1(2): 31–40.

    Article  Google Scholar 

  19. SHEPHARD K. L. Functions for fish mucus[J]. Reviews in Fish Biology and Fisheries, 1994, 4(4): 401–429.

    Article  Google Scholar 

  20. FLIK G., VANRIJS J. H. and BONGA S. E. W. Evidence for the presence of calmodulin in fish mucus[J]. European Journal of Biochemistry, 1984, 138(3): 651–654.

    Article  Google Scholar 

  21. LUO Y. Recent progress in exploring drag reduction mechanism of real sharkskin surface: A review[J]. Journal of Mechanics in Medicine and Biology. 2015, 15(3): 1530002.

    Article  Google Scholar 

  22. LUO Y. Recent research progress of biological sharkskin surface: A review[J]. Journal of Surfaces and Interfaces of Materials, 2014, 2(3): 167–181.

    Article  Google Scholar 

  23. LUO Y., ZHANG D. and LIU Y. et al. Chemical, mechanical and hydrodynamic properties research on composite drag reduction surface based on biological sharkskin morphology and mucus nano-long chain[J]. Journal of Mechanics in Medicine and Biology, 2015, 15(5): 1530084.

    Article  Google Scholar 

  24. TOMS B. A. Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers[C]. Conference: First International Congress on Rheology. Amsterdam, The Netherlands, 1948.

    Google Scholar 

  25. CHEN H., ZHANG X. and CHE D. et al. Synthetic effect of vivid shark skin and polymer additive on drag reduction reinforcement[J]. Advances in Mechanical Engineering, 2014, 6: 425–701.

    Google Scholar 

  26. BHUSHAN B. Biomimetics: lessons from nature-an overview[J]. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 2009, 367(1893): 1445–1486.

    Article  Google Scholar 

  27. CHOI K. S., GADD G. E. and PEARCEY H. H. et al. Tests of drag-reducing polymer coated on a riblet surfa-ce[J]. Applied Science Research, 1989, 46(3): 209–216.

    Article  Google Scholar 

  28. CHRISTODOULOU C., LIU K. N. and JOSEPH D. D. Combined effects of riblets and polymers on drag reduction in pipes[J]. Physics of Fluids A, 1991, 3(5): 995–996.

    Article  Google Scholar 

  29. WHITE C. M., MUNGA M. G. Mechanics and prediction of turbulent drag reduction with polymer additives[J]. Annual Review of Fluid Mechanics, 2008, 40: 235–256.

    Article  MathSciNet  MATH  Google Scholar 

  30. TOONDER J. M., HULSEN M. A. and KUIKEN G. D. C. et al. Drag reduction by polymer additives in a turbulent pipe flow: Numerical and laboratory experiments[J]. Journal of Fluid Mechanics, 1997, 337: 193–231.

    Article  Google Scholar 

  31. WEI T., WILLMARTH W. W. Modifying turbulent structure with drag-reducing polymer additives in turbulent channel flows[J]. Journal of Fluid Mechanics, 1992, 245: 619–641.

    Article  Google Scholar 

  32. MIN T., CHOI H. and YOO J. Y. Maximum drag reduction in a turbulent channel flow by polymer additives[J]. Journal of Fluid Mechanics, 2003, 492: 91–100.

    Article  MATH  Google Scholar 

  33. HEYNDERICKX G. J., DAS A. K. and WILDE J. D. et al. Effect of clustering on gas-solid drag in dilute two-phase flow[J]. Industry and Engineering Chemistry Research, 2004, 43(16): 4635–4646.

    Article  Google Scholar 

  34. BARI H. A. D., SUALI E. and HASSAN Z. Glycolic acid ethoxylate lauryl ether performance as drag reduction anget in aqueous media flow in pipelines[J]. Journal of Applied Sciences, 2008, 8(23): 4410–4415.

    Article  Google Scholar 

  35. LUO Y., LIU Y. and ZHANG D. Advanced progress in nature gas pipelining applying different drag reduction/ energy saving technologies: A review[J]. European Journal of Environmental and Civil Engineering, 2015, 19(8): 931–949.

    Article  Google Scholar 

  36. HUEY J. C., GENE E. K. and MICHAEL S. F. et al. DRA for gas pipelining successful in Gulf of Mexico trial[J]. Oil and Gas Journal, 2000, 98(23): 54–58.

    Google Scholar 

  37. BHUSHAN B. Adhesion and stiction: Mechanisms, measurement techniques and methods for reduction[J]. Journal of Vacuum Science and Technology B, 2003, 21(6): 2262–2296.

    Article  Google Scholar 

  38. LUO Y., LIU Y. Numerical simulation of micro flow field on biomimetic sharkskin micro-grooved surface[J]. Advanced Materials Research, 2014, 884–885: 378–381.

    Article  Google Scholar 

  39. ZHANG G., ZHANG J. and XIE G. et al. Cicada wings: A stamp from nature for nanoimprint lithography[J]. Small, 2006, 12(2), 1440–1443.

    Article  Google Scholar 

  40. NARESH M. D., ARUMUGAM V. and SANJEEVI R. Mechanical behavior of shark skin[J]. Journal of Bioscience, 1997, 22(4): 431–437.

    Article  Google Scholar 

  41. BECHERT D. W., BRUSE M. and HAGE W. et al. Fluid mechanics of biological surfaces and their technological application[J]. Naturwissenschaften, 2000, 87(4): 157–171.

    Article  Google Scholar 

  42. LUO Y., ZHANG D. Investigation on fabricating continuous vivid sharkskin surface by bio-replicated rolling method[J]. Applied Surface Science, 2013, 282: 370–375.

    Article  Google Scholar 

  43. LUO Y., ZHANG D. Study on the micro-replication precision of shark skin[J]. Applied Mechanics and Materials, 2011, 44–47: 1151–1157.

    Article  Google Scholar 

  44. WALSH M. J. Riblets as viscous drag reduction technique[J]. AIAA Journal, 1983, 21(4): 485–486.

    Article  Google Scholar 

  45. BECHERT D. W., BRUSE M. and HAGE W. et al. Experiments on drag reducing surfaces and their optimization with an adjustable geometry[J]. Journal of Fluid Mechanics, 1997, 338: 59–87.

    Article  Google Scholar 

  46. BECHERT D. W., BARTENWERFER M. The viscous flow on surfaces with longitudinal ribs[J]. Journal of Fluid Mechanics, 1989, 206: 105–129.

    Article  Google Scholar 

  47. CHOI H., MOIN P. and KIM J. Direct numerical simulation of turbulent flow over riblets[J]. Journal of Fluid Mechanics, 1993, 255: 503–539.

    Article  MATH  Google Scholar 

  48. DEAN B., BHUSHAN B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: A review[J]. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 2010, 368(1929): 4775–4806.

    Article  Google Scholar 

  49. BIXLER G. D., BHUSHAN B. Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects[J]. Soft Matter, 2012, 8(44): 11271–11284.

    Article  Google Scholar 

  50. LANG A., MOTTA P. and HABEGGER M. L. et al. Shark skin separation control mechanisms[J]. Marine Technology Society Journal, 2011, 45(4): 208–215.

    Article  Google Scholar 

  51. LANG A. W., MOTTA P. and HIDALGO P. et al. Bristled shark skin: A microgeometry for boundary layer control?[J]. Bioinspiration and Biomimetics, 2008, 3(4): 046005.

    Article  Google Scholar 

  52. HAN Xin, ZHANG De-yuan. Study on the micro-replication of shark skin[J]. Science in China Series E: Technological Sciences, 2008, 51(7): 890–896.

    Article  Google Scholar 

  53. HAN Xin, ZHANG De-yuan and LI Xiang et al. Bio-replicated forming of the biomimetic drag-reducing surfaces in large area based on shark skin[J]. Chinese Science Bulletin, 2008, 53(10): 1587–1592.

    Google Scholar 

  54. LUO Y., ZHANG D. and LIU Y. et al. Bio/micro-rolling fabrication of biological sharkskin morphology on semi-cured coating and drag force experimental research[J]. Journal of Mechanics in Medicine and Biology, 2015, 16(2): 1650016.

    Article  Google Scholar 

  55. ZHANG De-yuan, LUO Yue-hao and LI Xiang et al. Numerical simulation and experimental study of drag-reducing surface of a real shark skin[J]. Journal of Hydrodynamics, 2011, 23(2): 204–211.

    Article  Google Scholar 

  56. LUO Y., LIU Y. and ZHANG D. et al. Influence of morphology for drag reduction effect of sharkskin surfa-ce[J]. Journal of Mechanics in Medicine and Biology, 2014, 14(2): 1450029.

    Article  Google Scholar 

  57. LIU K. N., CHRISTODOULOUT C. and RICCIUST O. et al. Drag reduction in pipes lined with riblets[J]. AIAA Journal, 1999, 28(10): 1697–1698.

    Google Scholar 

  58. LUO Y., LIU Y. and ANDERSON J. et al. Improvement of water repellent and hydrodynamic drag reduction property on bio-inspired surface and exploring sharkskin effect mechanism[J]. Applied Physics A, 2015, 120(1): 369–377.

    Article  Google Scholar 

  59. KOELTZSCH K., DINKELACKER A. and GRUND-MANN R. Flow over convergent and divergent wall riblets[J]. Experiments in Fluids, 2002, 33(2): 346–350.

    Article  Google Scholar 

  60. WEN L., WEAVER J. C., LAUDER G. V. Biomimetic shark skin: design, fabrication and hydrodynamic function[J]. The Journal of Experimental Biology, 2014, 217(10): 1656–1666.

    Article  Google Scholar 

  61. MOTTA P., HABEGGER M. L. and LANG A. et al. Scale morphology and flexibility in the shortfin mako isurus oxyrinchus and the blacktip shark carcharhinus limbatus[J]. Journal of Morphology, 2012, 273(10): 1096–1110.

    Article  Google Scholar 

  62. LI X., CAI J. and ZHANG D. Study on the manufacturing method of the biomimetic drag reducing morphology replication mold[J]. Advanced Material Research, 2010, 97–101: 2533–2537.

    Article  Google Scholar 

  63. NAKAO S. I. Application of V shape riblets to pipe flows[J]. Journal of Fluids Engineering, 1991, 113(4): 587–590.

    Article  Google Scholar 

  64. PARK Y. W., KIM T. W. Evaluation of microforming methods for shark skin replication[J]. Materials Research Innovations, 2014, 18(2): 992–996.

    Google Scholar 

  65. LANG A. W., BRADSHAW M. T. and SMITH J. A. et al. Movable shark scales act as a passive dynamic micro-roughness to control flow separation[J]. Bioinspiration and Biomimetics, 2014, 9(3): 034017.

    Article  Google Scholar 

  66. LIU Zhi-hua, DONG Wen-cai and XIONG Ying et al. Analysis on factors and mechanism of drag reduction by grooved surface[J]. Journal of Ship Mechanics, 2007, 11(6): 820–830(in Chinese).

    Google Scholar 

  67. LUO Y., ZHANG D. and CHEN H. Research on manufacturing vivid trans-scale shark skin surface and drag-reducing effect simulation[J]. Advanced Science Letters, 2012, 5(1): 49–55.

    Article  Google Scholar 

  68. DANIEL T. L. Fish mucus: In situ measurement of polymer drag reduction[J]. Biological Bulletin, 1981, 160(3): 376–382.

    Article  Google Scholar 

  69. LI Feng-chen, CAI Wei-hua and ZHANG Hong-na et al. Influence of polymer additives on turbulent energy cascading in forced homogeneous isotropic turbulence studied by direct numerical simulations[J]. Chinese Physics B, 2012, 21(11): 114701.

    Article  Google Scholar 

  70. LUO Y., ZHANG D. and LIU Y. et al. Chemical, mechanical and hydrodynamic properties research on composite drag reduction surface based on biological sharkskin morphology and mucus nano-long chain[J]. Journal of Mechanics in Medicine and Biology, 2015, 15(5): 1530084.

    Article  Google Scholar 

  71. OEFFNER J., LAUDER G. V. The hydrodynamic function of shark skin and two biomimetic applications[J]. The Journal of Experimental Biology, 2012, 215(5): 785–795.

    Article  Google Scholar 

  72. LUO Y., ZHANG D. Experimental research on biomi-metic drag-reducing surface application in natural gas pipelines[J]. Oil Gas-European Magazine, 2012, 38(4): 213–214.

    Google Scholar 

  73. ZHANG D., LUO Y. and CHEN H. et al. Exploring drag-reducing grooved internal coating for gas pipeli-nes[J]. Pipeline and Gas Journal, 2011, 238(3): 58–60.

    Google Scholar 

  74. LUO Y., ZHANG D. and LIU Y. Exploring a method to effectively avoid drop-out of internal coating in natural gas pipelines[J]. Oil Gas-European Magazine, 2014, 40(2): 96–97.

    Google Scholar 

  75. STEFANI R. Olympic swimming gold: The suit or the swimmer in the suit?[J] Significance, 2012, 9(2): 13–17.

    Article  Google Scholar 

  76. ALAM F., STEINER T. and CHOWDHURY H. et al. A study of golf ball aerodynamic drag[J]. Procedia Engineering, 2011, 13: 226–231.

    Article  Google Scholar 

  77. CLAUDIA C. B., SCHULZ U. Shark skin inspired riblet coatings for aerodynamically optimized high temperature applications in aeroengines[J]. Advanced Engineering Materials, 2011, 13(4): 288–295.

    Article  Google Scholar 

  78. CARMAN M. L., ESTES T. G. and FEINBERG A. W. et al. Engineered antifouling microtopographies-correlating wettability with cell attachment[J]. Biofouling, 2006, 22(1–2): 11–21.

    Article  Google Scholar 

  79. VISWANATH P. R. Aircraft viscous drag reduction using riblets[J]. Progress in Aerospace Sciences, 2002, 38(627): 571–600.

    Article  Google Scholar 

  80. NOURAL Nowrouz Mohammad, BAKHSH Mohammad Saadat and SEKHAVAT Setareh. Analysis of shear rate effects on drag reduction in turbulent channel flow with superhydrophobic wall[J]. Journal of Hydrodynamics, 2013, 25(6): 944–953.

    Article  Google Scholar 

  81. GAO X., JIANG L. Biophysics: Water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36–36.

    Article  Google Scholar 

  82. SUN T., FENG L. and GAO X. et al. Bioinspired surfaces with special wettability[J]. Accounts of Chemical Research, 2005, 38(8): 644–652.

    Article  Google Scholar 

  83. NOURAL Nowrouz Mohammad, SEKHAVAT Setareh and MOFIDI Alireza. Drag reduction in a turbulent channel flow with hydrophobic wall[J]. Journal of Hydrodynamics, 2012, 24(3): 458–466.

    Article  Google Scholar 

  84. WENZEL R. N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry, 1936, 28(8): 988–994.

    Article  Google Scholar 

  85. CASSIE A. B. D., BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546–551.

    Article  Google Scholar 

  86. WANG B., ZHANG Y. and SHI L. et al. Advances in the theory of superhydrophobic surfaces[J]. Journal of Materials Chemistry, 2012, 22(38): 20112–20127.

    Article  Google Scholar 

  87. GUO Z., LIU W. and SU B. Superhydrophobic surfaces: From natural to biomimetic to functional[J]. Journal of Colloid and Interface Science, 2011, 353(2): 335–355.

    Article  Google Scholar 

  88. BRIANR E., ERIC S. W. and KEARY A. et al. Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction[J]. Journal of Fluid Mechanics, 2008, 612: 201–236.

    MATH  Google Scholar 

  89. SANDERS W. C., WINKEL E. S. et al. Bubble friction drag reduction in a high-Reynolds-number flat-plate turbulent boundary layer[J]. Journal of Fluid Mechanics, 2006, 552: 353–380.

    Article  MATH  Google Scholar 

  90. LUMLEY J. L. Drag reduction in two phase and polymer flows[J]. Physics of Fluids, 1977, 20(10): 65–71.

    Google Scholar 

  91. DRUZHININ O. A., ELGHOBASHI S. Direct numerical simulations of bubble-laden turbulent flows using two-fluid formulation[J]. Physics of Fluids, 1998, 10(3): 685–697.

    Article  Google Scholar 

  92. KUMAGAI I., TAKAHASHI Y. and MURAI Y. Power-saving device for air bubble generation using a hydrofoil to reduce ship drag: Theory, experiments, and application to ships[J]. Ocean Engineering, 2015, 95: 183–194.

    Article  Google Scholar 

  93. WU Cheng-sheng, HE Shu-long and ZHU De-xiang et al. Numerical simulation of microbubble flow around an axisymmetric body[J]. Journal of Hydrodynamics, 2006, 18(3): 217–222.

    Article  Google Scholar 

  94. CECCIO S. Friction drag reduction of external flows with bubble and gas injection[J]. Annual Review of Fluid Mechanics, 2010, 42: 183–203.

    Article  Google Scholar 

  95. KATO H., MIURA K. and YAMAGUCHI H. Experimental study on microbubble ejection method for fri-ctional drag reduction[J]. Journal of Marine Science and Technology, 1998, 3(3): 122–129.

    Article  Google Scholar 

  96. SHU-peng, TANG Chuan-lin and ZHANG Feng-hua et al. Dynamic characteristics on friction drag reduction for fluid transport using flexible tubes[J]. Journal of Sichuan University (Engineering Science Edition), 2009, 41(2): 24–28(in Chinese).

    Google Scholar 

  97. CAI Shu-peng, JIN Guo-yu and LI Da-mei et al. Drag reduction effect of coupling flexible tubes with turbulent flow[J]. Journal of Hydrodynamics, 2008, 20(1): 96–100.

    Article  Google Scholar 

  98. CHOIL J. I., SUNG H. J. and XU C. X. Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows[J]. AIAA Journal, 2002, 40(5): 842–850.

    Article  Google Scholar 

  99. XU C. X., CHOI J. and SUNG H. J. Suboptimal control for drag reduction in turbulent pipe flow[J]. Fluid Dynamic Research, 2002, 30(4): 217–231.

    Article  Google Scholar 

  100. WENG H. C., CHEN C. K. Drag reduction and heat transfer enhancement over a heated wall of a vertical annular microchannel[J]. International Journal of Heat and Mass Transfer, 2009, 52(3–4): 1075–1079.

    Article  MATH  Google Scholar 

  101. LIU L., GUO Q. Y. and GUO X. F. et al. The Effect of drag-reducing polymer on heat transfer in gas-liquid two-phase flow[J]. Advanced Materials Research, 2011, 383–390: 856–861.

    Article  Google Scholar 

  102. ZHANG De-yuan, LI Yuan-yue and HAN Xin et al. High-precision bio-replication of synthetic drag reduction shark skin[J] Chinese Science Bulletin, 2011, 56(9): 938–944.

    Article  Google Scholar 

  103. LIGUO W., JAN J. Nonlinear passive control of a wave energy converter subject to constraints in irregular waves[J]. Energies, 2015, 8(7): 6528–6542.

    Article  Google Scholar 

  104. YAO Yan, LU Chuan-jing and SI Ting et al. Water tunnel experimental investigation on the drag reduction characteristics of the traveling wavy wall[J]. Journal of Hydrodynamics, 2011, 23(1): 65–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuehao Luo.

Additional information

Biography: LUO Yuehao (1985-), Male, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Wang, L., Green, L. et al. Advances of drag-reducing surface technologies in turbulence based on boundary layer control. J Hydrodyn 27, 473–487 (2015). https://doi.org/10.1016/S1001-6058(15)60507-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(15)60507-8

Key words

Navigation