Skip to main content
Log in

Interactions between vegetation, water flow and sediment transport: A review

  • Review article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The vegetation, as one of the most important components, plays a key role in the aquatic environment. This paper reviews recent progress on the complex interaction between the vegetation and the water flow. Meanwhile, the relationships between the vegetation and the sediment transport are discussed. The vegetation characteristics, such as the shape, the flexibility and the height, have significant effects on the flow structures. The density and the arrangement of the vegetation influence the flow velocity in varying degrees and the flow resistance increases with the increase of the plant density. In turns, the growth of aquatic plants is influenced by the water flow via the direct effect (stretching, breakage, uprooting, etc.) and the indirect effect (changes in gas exchange, bed material distribution, sediment resuspension etc.). Numerical models were developed and widely used for the flow through vegetated waterways, and the results could be applied to solve engineering problems in practice. The sediment is essential for the survival of most vegetation. The existence of the vegetation helps to resist the deformation and the erosion of the bed sediment, to maintain the bed stability and to improve the water quality by removing suspended particles. Additionally, the effects of the sediment transport on the growth of the vegetation mainly consist of the reduction of their photosynthetic capacity by decreasing the water transparency and hindering the exchange of gas and nutrients between plants and water by attaching particles to plant leaves. Therefore, the interaction between the vegetation and the sediment transport is great and complicated. In order to establish a healthy aquatic ecosystem, it is important to study the relationships between the vegetation, the water flow and the sediment transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van DONK E., Van De BUND W. J. Impact of submerged macrophytes including charophytes on phyto-and zooplankton communities: Allelopathy versus other me-chanisms[J]. Aquatic Botany, 2002, 72(3): 261–274.

    Article  Google Scholar 

  2. BORNETTE G., PUIJALON S. Response of aquatic plants to abiotic factors: A review[J]. Aquatic Sciences, 2011, 73(1): 1–14.

    Article  Google Scholar 

  3. LIU Cheng, SHEN Yong-ming. 3D turbulence model for the flow and sediment transport with aquatic vegetation[J]. Advances in Water Science, 2008, 19(6): 851–856(in Chinese).

    Google Scholar 

  4. LIU Cheng, SHEN Yong-ming. Flow structure and sediment transport with impacts of aquatic vegetation[J]. Journal of Hydrodynamics, 2008, 20(4): 461–468.

    Article  Google Scholar 

  5. MISHRA V. K., TRIPATHI B. Concurrent removal and accumulation of heavy metals by the three aquatic ma-crophytes[J]. Bioresource Technology, 2008, 99(15): 7091–7097.

    Article  Google Scholar 

  6. WANG Chao, WANG Cun and WANG Ze. Effects of submerged macrophytes on sediment suspension and NH4-N release under hydrodynamic conditions[J]. Journal of Hydrodynamics, 2010, 22(6): 810–815.

    Article  Google Scholar 

  7. MEI X. Q., YANG Y. and TAM N. F. Y. et al. Roles of root porosity, radial oxygen loss, Fe plaque formation on nutrient removal and tolerance of wetland plants to domestic wastewater[J]. Water Research, 2014, 50: 147–159.

    Article  Google Scholar 

  8. TANG Hong-wu, YAN Jing and XIAO Yang et al. Manning’s roughness coefficient of vegetated channe-ls[J]. Journal of Hydraulic Engineering, 2007, 38(11): 1347–1353(in Chinese).

    Google Scholar 

  9. SCHULZ M., KOZERSKI H. P. and PLUNTKE T. et al. The influence of macrophytes on sedimentation and nutrient retention in the lower River Spree (Germany)[J]. Water Research, 2003, 37(3): 569–578.

    Article  Google Scholar 

  10. AFZALIMEHR H., DEY S. Influence of bank vegetation and gravel bed on velocity and Reynolds stress distributions[J]. International Journal of Sediment Research, 2009, 24(2): 236–246.

    Article  Google Scholar 

  11. FOLKARD A. M. Vegetated flows in their environmental context: A review[J]. Proceedings of the ICE-Engineering and Computational Mechanics, 2011, 164(1): 3–24.

    Google Scholar 

  12. CAROLLO F., FERRO V. and TERMINI D. Flow velocity measurements in vegetated channels[J]. Journal of Hydraulic Engineering, ASCE, 2002, 128(7): 664–673.

    Article  Google Scholar 

  13. LI Yan-hong, ZHAO Min. Experimental studies of hydrodynamics in vegetated river flows-Vertical profiles of velocity, shear velocity and Manning roughness[J]. Journal of Hydrodynamics, Ser. A, 2004, 19(4): 513–519(in Chinese).

    Google Scholar 

  14. YANG Ke-jun, LIU Xing-nian and CAO Shu-you et al. Turbulence characteristics of overbank flow in compound river channel with vegetated floodplain[J]. Journal of Hydraulic Engineering, 2005, 36(10): 1263–1268(in Chinese).

    Google Scholar 

  15. CHEN Gang, HUAI Wen-xin and HAN Jie et al. Flow structure in partially vegetated rectangular channels[J]. Journal of Hydrodynamics, 2010, 22(4): 590–597.

    Article  Google Scholar 

  16. HUAI W., WANG W. and HU Y. et al. Analytical model of the mean velocity distribution in an open channel with double-layered rigid vegetation[J]. Advances in Water Resources, 2014, 69: 106–113.

    Article  Google Scholar 

  17. LIU Shi-he, CAO Bing. Hybrid simulation of the hydraulic characteristics at river and lake confluence[J]. Journal of Hydrodynamics, 2011, 23(1): 105–113.

    Article  Google Scholar 

  18. WANG Pei-fang, WANG Chao. Numerical model for flow through submerged vegetation regions in a shallow lake[J]. Journal of Hydrodynamics, 2011, 23(2): 170–178.

    Article  Google Scholar 

  19. ROBERTS D. A. Causes and ecological effects of resuspended contaminated sediments (RCS) in marine environments[J]. Environment International, 2012, 40: 230–243.

    Article  Google Scholar 

  20. LIU Cheng, SHEN Yong-ming. Numerical modeling of alluvial landforms with the impacts of aquatic vegetation[J]. Journal of Hydraulic Engineering, 2010, 41(2): 127–133(in Chinese).

    Google Scholar 

  21. HU Xue-yue, LIU Bin and ZENG Guang-ming et al. Experimental study on effects of vegetation roughness on flow resistance of open channel[J]. Advances in Water Science, 2008, 19(3): 373–377(in Chinese).

    Google Scholar 

  22. PUJOL D., COLOMER J. and SERRA T. et al. Effect of submerged aquatic vegetation on turbulence induced by an oscillating grid[J]. Continental Shelf Research, 2010, 30(9): 1019–1029.

    Article  Google Scholar 

  23. HORPPILA J., KAITARANTA J. and JOENSUU L. et al. Influence of emergent macrophyte (Phragmites australis) density on water turbulence and erosion of organic-rich sediment[J]. Journal of Hydrodynamics, 2013, 25(2): 288–293.

    Article  Google Scholar 

  24. XU Hong-wen, LU Yan. Research advances of aquatic plants in water ecological restoration[J]. Chinese Agricultural Science Bulletin, 2011, 27(3): 413–416(in Chinese).

    MathSciNet  Google Scholar 

  25. KIRZHNER F., ZIMMELS Y. and MALKOVSKAJA J. et al. Removal of microbial biofilm on Water Hyacinth plants roots by ultrasonic treatment[J]. Ultrasonics, 2009, 49(2): 153–158.

    Article  Google Scholar 

  26. GUO Hui, HUANG Guo-bing. Research advances of the interaction among macrophytes, water flow and sediment resuspension[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(8): 108–116(in Chinese).

    Google Scholar 

  27. WHITE P. S., JENTSCH A. Progress in botany[M]. Berlin, Germany: Springer, 2001, 399–450.

    Book  Google Scholar 

  28. WANG Pei-fang, WANG Chao and ZHU David Z. Hydraulic resistance of submerged vegetation related to effective height[J]. Journal of Hydrodynamics, 2010, 22(2): 265–273.

    Article  MathSciNet  Google Scholar 

  29. BIGGS B. J. Hydraulic habitat of plants in streams[J]. Regulated Rivers: Research and Management, 1996, 12(2): 131–144.

    Article  Google Scholar 

  30. HENRY C. P., AMOROS C. and BORNETTE G. Species traits and recolonization processes after flood disturbances in riverine macrophytes[J]. Vegetatio, 1996, 122(1): 13–27.

    Article  Google Scholar 

  31. WANG Hua, PANG Yong and LIU Shen-bao et al. Research progress on influencing of environmental factors on the growth of submersed macrophytes[J]. Acta Eco-logica Snica, 2008, 28(8): 3958–3968(in Chinese).

    Google Scholar 

  32. WANG C., WANG P. Hydraulic resistance characteristics of riparian reed zone in river[J]. Journal of Hy-drologic Engineering, 2007, 12(3): 267–272.

    Article  Google Scholar 

  33. WANG Cun, WANG Chao. Turbulent characteristics in open channel flow with emergent and submerged ma-crophytes[J]. Advances in Water Science, 2010, 21(6): 816–822(in Chinese).

    Google Scholar 

  34. HUI E-qing, HU Xing-e, JIANG Chun-bo et al. A study of drag coefficient related with vegetation based on the flume experiment[J]. Journal of Hydrodynamics, 2010, 22(3): 329–337.

    Article  Google Scholar 

  35. LI Y., WANG Y. and ANIM D. O. et al. Flow characteristics in different densities of submerged flexible vegetation from an open-channel flume study of artificial plants[J]. Geomorphology, 2014, 204: 314–324.

    Article  Google Scholar 

  36. HAWLEY N., EADIE B. J. Observations of sediment transport in Lake Erie during the winter of 2004–2005[J]. Journal of Great Lakes Research, 2007, 33(4): 816–827.

    Article  Google Scholar 

  37. WANG P. F., ZHAO L. and WANG C. et al. Nitrogen distribution and potential mobility in sediments of three typical shallow urban lakes in China[J]. Environmental Engineering Science, 2009, 26(10): 1511–1521.

    Article  Google Scholar 

  38. KANZARI F., SYAKTI A. and ASIA L. et al. Distributions and sources of persistent organic pollutants (aliphatic hydrocarbons, PAHs, PCBs and pesticides) in surface sediments of an industrialized urban river (Huveaune), France[J]. Science of the Total Environment, 2014, 478: 141–151.

    Article  Google Scholar 

  39. NAHLIK A. M., MITSCH W. J. Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica[J]. Ecological Engineering, 2006, 28(3): 246–257.

    Article  Google Scholar 

  40. MILLER S. M., HORNBUCKLE K. C. Spatial and temporal variations of persistent organic pollutants impacted by episodic sediment resuspension in southern Lake Michigan[J]. Journal of Great Lakes Research, 2010, 36(2): 256–266.

    Article  Google Scholar 

  41. ZHENG S., WANG P. and WANG C. et al. Distribution of metals in water and suspended particulate matter during the resuspension processes in Taihu Lake sediment, China[J]. Quaternary International, 2013, 286: 94–102.

    Article  Google Scholar 

  42. AGARWALA B., DAS K. and RAYCHOUDHURY P. Morphological, ecological and biological variations in the mustard aphid, Lipaphis pseudobrassicae (Kaltenbach) (Hemiptera: Aphididae) from different host plants[J]. Journal of Asia-Pacific Entomology, 2009, 12(3): 169–173.

    Article  Google Scholar 

  43. WALTER J., JENTSCH A. and BEIERKUHNLEIN C. et al. Ecological stress memory and cross stress tolerance in plants in the face of climate extremes[J]. Environmental and Experimental Botany, 2013, 94: 3–8.

    Article  Google Scholar 

  44. HE H. H., VENEKLAAS E. J. and KUO J. et al. Physiological and ecological significance of biomineraliza-tion in plants[J]. Trends in Plant Science, 2014, 19(3): 166–174.

    Article  Google Scholar 

  45. VYMAZAL J. Plants used in constructed wetlands with horizontal subsurface flow: a review[J]. Hydrobiologia, 2011, 674(1): 133–156.

    Article  Google Scholar 

  46. WU Fu-sheng, JIANG Shu-hai. Turbulent characteristics in open channel with flexible and rigid vegetation[J]. Chinese Journal of Hydrodynamics, 2008, 23(2): 158–165(in Chinese).

    Google Scholar 

  47. LI Yan-hong, LI Dong and FAN Jing-lei. Turbulence intensity maximum and its influence factors in submerged river flow with plant[J]. Advance in Water Science, 2007, 18(5): 706–710(in Chinese).

    Google Scholar 

  48. OKAMOTO T., NEZU I. Large eddy simulation of 3-D flow structure and mass transport in open-channel flows with submerged vegetations[J]. Journal of Hydro-Environment Research, 2010, 4(3): 185–197.

    Article  Google Scholar 

  49. STEPHAN U., GUTKNECHT D. Hydraulic resistance of submerged flexible vegetation[J]. Journal of Hydrology, 2002, 269(1–2): 27–43.

    Article  Google Scholar 

  50. NIKURADSE J. Strömungsgesetze in rauhen Rohren[M]. Forschungsheft, Germany: Verein Deutscher Ingenieure, 1933.

    MATH  Google Scholar 

  51. CHOW V. T. Open-channel hydraulics[M]. New York, USA: McGraw-Hill, 1959.

    Google Scholar 

  52. JÄRVELÄ J. Effect of submerged flexible vegetation on flow structure and resistance[J]. Journal of Hydrology, 2005, 307(1): 233–241.

    Article  Google Scholar 

  53. AKAN A. O. Open channel hydraulics[M]. Oxford, UK: Butterworth-Heinemann, 2006.

    Google Scholar 

  54. HEY R. D. Dynamic process response model of river channel development[J]. Earth Surface Processes, 1979, 4(1): 59–72.

    Article  Google Scholar 

  55. CHARNLEY P. R. Lowland drainage[J]. River Engineering, 1987, 1: 173–224.

    Google Scholar 

  56. DARBY S. E. Effect of riparian vegetation on flow resistance and flood potential[J]. Journal of Hydraulic Engineering, ASCE, 1999, 125(5): 443–454.

    Article  Google Scholar 

  57. GREEN J. C. Modelling flow resistance in vegetated streams: Review and development of new theory[J]. Hydrological Processes, 2005, 19(6): 1245–1259.

    Article  Google Scholar 

  58. PETRYK S., BOSMAJIAN G. Analysis of flow through vegetation[J]. Journal of the Hydraulics Division, 1975, 101(7): 871–884.

    Google Scholar 

  59. RIGHETTI M., ARMANINI A. Flow resistance in open channel flows with sparsely distributed bushes[J]. Journal of Hydrology, 2002, 269(1): 55–64.

    Article  Google Scholar 

  60. WHITE F. M., CORFIELD I. Viscous fluid flow[M]. New York, USA: McGraw-Hill, 1991.

    Google Scholar 

  61. TSIHRINTZIS V. A. Discussion of “variation of roughness coefficients for unsubmerged and submerged vege-tation”[J]. Journal of Hydraulic Engineering, ASCE, 2001, 173(3): 241–244.

    Article  Google Scholar 

  62. SERRA T., FERNANDO H. J. S. and RODRÍGUEZ R. V. Effects of emergent vegetation on lateral diffusion in wetlands[J]. Water Research, 2004, 38(1): 139–147.

    Article  Google Scholar 

  63. RAUPACH M., FINNIGAN J. and BRUNEI Y. Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy[J]. Boundary-Layer Meteorology, 1996, 78(3–4): 351–382.

    Article  Google Scholar 

  64. KOUWEN N., UNNY T. E. Flexible roughness in open channels[J]. Journal of the Hydraulics Division, 1973, 99(5): 713–728.

    Google Scholar 

  65. KOUWEN N., LI R. M. and SIMONS D. B. Flow resistance in vegetabled waterways[M]. Michigan, USA: American Society of Agricultural and Biological Engineers, 1981.

    Google Scholar 

  66. KOUWEN N. Modern approach to design of grassed channels[J]. Journal of Irrigation and Drainage Engineering, 1992, 118(5): 713–743.

    Article  Google Scholar 

  67. LI R. M., SHEN H. W. Effect of tall vegetation on flow and sediment[J]. Journal of Hydraulics Division, 1973, 99(5): 793–814.

    Google Scholar 

  68. HUAI Wen-xin, LI Cheng-guang and ZENG Yu-hong et al. Curved open channel flow on vegetation roughened inner bank[J]. Journal of Hydrodynamics, 2012, 24(1): 124–129.

    Article  Google Scholar 

  69. PLEW D. R., ENRIGHT M. P. and NOKES R. I. et al. Effect of mussel bio-pumping on the drag on and flow around a mussel crop rope[J]. Aquacultural Engineering, 2009, 40(2): 55–61.

    Article  Google Scholar 

  70. ARROYAVE J. V., CROSATO A. Effects of river floodplain lowering and vegetation cover[J]. Proceedings of the ICE-Water Management, 2010, 163(9): 457–467.

    Google Scholar 

  71. NEPF H., VIVONI E. Flow structure in depth-limited, vegetated flow[J]. Journal of Geophysical Research: Oceans, 2000, 105(C12): 28547–28557.

    Article  Google Scholar 

  72. WANG Chao, YU Ji-yu and WANG Pei-fang et al. Flow structure of partly vegetated open-channel flows with eelgrass[J]. Journal of Hydrodynamics, 2009, 21(3): 301–307.

    Article  MathSciNet  Google Scholar 

  73. WU Fu-sheng. Characteristics of flow resistance in open channels with non-submerged rigid vegetation[J]. Journal of Hydrodynamics, 2008, 20(2): 239–245.

    Article  Google Scholar 

  74. NEUMEIER U. Quantification of vertical density variations of salt-marsh vegetation[J]. Estuarine, Coastal and Shelf Science, 2005, 63(4): 489–496.

    Article  Google Scholar 

  75. RAO Lei, QIAN Jing and AO Yan-hui. Influence of artificial ecological floating beds on river hydraulic chara-cteristics[J]. Journal of Hydrodynamics, 2014, 26(3): 474–481.

    Article  Google Scholar 

  76. DAVIDSON-ARNOTT R. G. D., BAUER B. O. and WALKER I. J. et al. High-frequency sediment transport responses on a vegetated foredune[J]. Earth Surface Processes and Landforms, 2012, 37(11): 1227–1241.

    Article  Google Scholar 

  77. GORRICK S., RODRÍGUEZ J. F. Sediment dynamics in a sand bed stream with riparian vegetation[J]. Water Resources Research, 2012, 48(2): W02505.

    Article  Google Scholar 

  78. PLEW D. R., COOPER G. G. and CALLAGHAN F. M. Turbulence-induced forces in a freshwater macrophyte canopy[J]. Water Resources Research, 2008, 44(2): 02414.

    Article  Google Scholar 

  79. JÄRVELÄ J. Flow resistance of flexible and stiff vegetation: A flume study with natural plants[J]. Journal of Hydrology, 2002, 269(1): 44–54.

    Article  Google Scholar 

  80. KOTEY N., BERGSTROM D. and TACHIE M. Power laws for rough wall turbulent boundary layers[J]. Physics of Fluids, 2003, 15(6): 1396–1404.

    Article  MATH  Google Scholar 

  81. CHEN Y., KAO S. Velocity distribution in open channels with submerged aquatic plant[J]. Hydrological Processes, 25(13): 2009–2017.

    Google Scholar 

  82. BAPTIST M. J., BABOVIC V. and RODRGUEZ UTHURBURU J. et al. On inducing equations for vegetation resistance[J]. Journal of Hydraulic Research, 2007, 45(4): 435–450.

    Article  Google Scholar 

  83. SHI Zhong, LI Yan-hong. Experimental study of mean velocity profile in vegetated river flow[J]. Journal of Shanghai Jiao Tong University, 2003, 37(8): 1254–1260(in Chinese).

    Google Scholar 

  84. KUTIJA V., HONG H. T. M. A numerical model for assessing the additional resistance to flow introduced by flexible vegetation[J]. Journal of Hydraulic Research, 1996, 34(1): 99–114.

    Article  Google Scholar 

  85. ERDUARN K. S., KUTIJA V. Quasi-three-dimensional numerical model for flow through flexible, rigid, submerged and non-submerged vegetation[J]. Journal of Hydroinformatics, 2003, 5(3): 189–202.

    Article  Google Scholar 

  86. VELASCO D., BATEMAN A. and MEDINA V. A new integrated, hydro-mechanical model applied to flexible vegetation in riverbeds[J]. Journal of Hydraulic Research, 2008, 46(5): 579–597.

    Article  Google Scholar 

  87. IKEDA S., YAMADA T. and TODA Y. Numerical study on turbulent flow and honami in and above flexible plant canopy[J]. International Journal of Heat and Fluid Flow, 2001, 22(3): 252–258.

    Article  Google Scholar 

  88. LÓPEZ F., GARÍCA M. Open channel flow through simulated vegetation: Suspended sediment transport mo-deling[J]. Water Resources Research, 1998, 34(9): 2341–2352.

    Article  Google Scholar 

  89. NEARY V. S. Numerical solution of fully developed flow with vegetative resistance[J]. Journal of Engineering Mechanics, 2003, 129(5): 558–563.

    Article  Google Scholar 

  90. LI C. W., YAN K. Numerical investigation of wave-current-vegetation interaction[J]. Journal of Hydraulic Engineering, ASCE, 2007, 133(7): 794–803.

    Article  Google Scholar 

  91. LEU J. M., CHAN H. C. and JIA Y. F. et al. Cutting management of riparian vegetation by using hydrodyna-mic model simulations[J]. Advances in Water Resources, 2008, 31(10): 1299–1308.

    Article  Google Scholar 

  92. NAOT D., NEZU I. and NAKAGAWA H. Hydrodynamic behavior of partly vegetated open channels[J]. Journal of Hydraulic Engineering, ASCE, 1996, 122(11): 625–633.

    Article  Google Scholar 

  93. CHOI S. U., KANG H. Reynolds stress modeling of vegetated open-channel flows[J]. Journal of Hydraulic Research, 2004, 42(1): 3–11.

    Article  Google Scholar 

  94. LI C. W., ZENG C. 3D Numerical modelling of flow divisions at open channel junctions with or without vegetation[J]. Advances in Water Resources, 2009, 32(1): 49–60.

    Article  MathSciNet  Google Scholar 

  95. PATTON E. G., SHAW R. H. and JUDD M. J. et al. Largeeddy simulation of windbreak flow[J]. Boundary-Layer Meteorology, 1998, 87(2): 275–307.

    Article  Google Scholar 

  96. CUI J., NEARY V. S. LES study of turbulent flows with submerged vegetation[J]. Journal of Hydraulic Research, 2008, 46(3): 307–316.

    Article  Google Scholar 

  97. HUAI Wen-xin, WU Zhen-lei and QIAN Zhong-dong et al. Large eddy simulation of open channel flows with non-submerged vegetation[J]. Journal of Hydrodynamics, 2011, 23(2): 258–264.

    Article  Google Scholar 

  98. LI C. W., XIE J. F. Numerical modeling of free surface flow over submerged and highly flexible vegetation[J]. Advances in Water Resources, 2011, 34(4): 468–477.

    Article  Google Scholar 

  99. FRANKLIN P., DUNBAR M. and WHITEHEAD P. Flow controls on lowland river macrophytes: A re-view[J]. Science of the Total Environment, 2008, 400(1): 369–378.

    Article  Google Scholar 

  100. ZHANG Jian-tao, SU Xiao-hui. Numerical model for flow motion with vegetation[J]. Journal of Hydrodynamics, 2008, 20(2): 172–178.

    Article  Google Scholar 

  101. GORLA L., PERONA P. On quantifying ecologically sustainable flow releases in a diverted river reach[J]. Journal of Hydrology, 2013, 489: 98–107.

    Article  Google Scholar 

  102. WANG Chao, ZHU Ping and WANG Pei-fang et al. Effects of aquatic vegetation on flow in the Nansi Lake and its flow velocity modeling[J]. Journal of Hydrodynamics, Ser. B, 2006, 18(6): 640–648.

    Article  Google Scholar 

  103. HUAI Wen-xin, CHEN Zheng-bing and HAN Jie et al. Mathematical model for the flow with submerged and emerged rigid vegetation[J]. Journal of Hydrodynamics, 2009, 21(5): 722–729.

    Article  Google Scholar 

  104. ZHANG M., LI C. W. and SHEN Y. Depth-averaged modeling of free surface flows in open channels with emerged and submerged vegetation[J]. Applied Mathematical Modelling, 2013, 37(1): 540–553.

    Article  MathSciNet  MATH  Google Scholar 

  105. WILSON C. Flow resistance models for flexible submerged vegetation[J]. Journal of Hydrology, 2007, 342(3): 213–222.

    Article  Google Scholar 

  106. RIGHETTI M. Flow analysis in a channel with flexible vegetation using double-averaging method[J]. Acta Geophysica, 2008, 56(3): 801–823.

    Article  Google Scholar 

  107. HUAI W., ZENG Y. and XU Z. et al. Three-layer model for vertical velocity distribution in open channel flow with submerged rigid vegetation[J]. Advances in Water Resources, 2009, 32(4): 487–492.

    Article  Google Scholar 

  108. HUAI W., HU Y. and ZENG Y. et al. Velocity distribution for open channel flows with suspended vegeta-tion[J]. Advances in Water Resources, 2012, 49: 56–61.

    Article  Google Scholar 

  109. LITE S., BAGSTAD K. and STROMBERG J. Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance, San Pedro River, Arizona, USA[J]. Journal of Arid Environments, 2005, 63(4): 785–813.

    Article  Google Scholar 

  110. WINKLER E., PEINTINGER M. Impact of changing flood regime on a lakeshore plant community: Long-term observations and individual-based simulation[J]. Ecological Modelling, 2014, 273: 151–164.

    Article  Google Scholar 

  111. VOGEL S. Drag and flexibility in sessile organisms[J]. American Zoologist, 1984, 24(1): 37–44.

    Article  Google Scholar 

  112. SAND-JENSEN K. Drag and reconfiguration of freshwater macrophytes[J]. Freshwater Biology, 2003, 48(2): 271–283.

    Article  Google Scholar 

  113. O’HARE M. T., HUTCHINSON K. A. and CLARKE R. T. The drag and reconfiguration experienced by five macrophytes from a lowland river[J]. Aquatic Botany, 2007, 86(3): 253–259.

    Article  Google Scholar 

  114. DOYLE R. D. Effects of waves on the early growth of vallisneria americana[J]. Freshwater Biology, 2001, 46(3): 389–397.

    Article  Google Scholar 

  115. STRAND J. A., WEISNER S. E. B. Morphological plastic responses to water depth and wave exposure in an aquatic plant (Myriophyllum spicatum)[J]. Journal of Ecology, 2011, 89(2): 166–175.

    Article  Google Scholar 

  116. CROSSLEY M. N., DENNISON W. C. and WILLIAMS R. R. et al. The interaction of water flow and nutrients on aquatic plant growth[J]. Hydrobiologia, 2002, 489(1–3): 63–70.

    Article  Google Scholar 

  117. MADSEN J., CHAMBERS P. and JAMES W. et al. The interaction between water movement, sediment dynamics and submersed macrophytes[J]. Hydrobiologia, 2001, 444(1–3): 71–84.

    Article  Google Scholar 

  118. JOHANSSON M. E., NILSSON C. and NILSSON E. Do rivers function as corridors for plant dispersal?[J]. Journal of Vegetation Science, 1996, 7(4): 593–598.

    Article  Google Scholar 

  119. BOEDELTJE G., BAKKER J. P. and TEN BRINKE A. et al. Dispersal phenology of hydrochorous plants in relation to discharge, seed release time and buoyancy of seeds: The flood pulse concept supported[J]. Journal of Ecology, 2004, 92(5): 786–796.

    Article  Google Scholar 

  120. USHERWOOD J., ENNOS A. and BALL D. Mechanical and anatomical adaptations in terrestrial and aquatic buttercups to their respective environments[J]. Journal of Experimental Botany, 1997, 48(7): 1469–1475.

    Article  Google Scholar 

  121. SCHUTTEN J. Biomechanical limitations on macro-phytes in shallow lakes[D]. Doctoral Thesis, Amsterdam, The Netherlands: University of Amsterdam, 2005.

    Google Scholar 

  122. WU W. H., ZHENG H. B. and XU S. J. et al. Trace element geochemistry of riverbed and suspended sediments in the upper Yangtze River[J]. Journal of Geoche-mical Exploration, 2013, 124: 67–78.

    Article  Google Scholar 

  123. HORPPILA J., NURMINEN L. Effects of submerged macrophytes on sediment resuspension and internal phosphorus loading in Lake Hiidenvesi (southern Finland)[J]. Water Research, 2003, 37(18): 4468–4474.

    Article  Google Scholar 

  124. HORPPILA J., NURMINEN L. The effect of an emergent macrophyte (Typha angustifolia) on sediment re-suspension in a shallow north temperate lake[J]. Freshwater Biology, 2001, 46(11): 1447–1455.

    Article  Google Scholar 

  125. VARGO S. M., NEELY R. K. and M KIRKWOOD S. Emergent plant decomposition and sedimentation: Response to sediments varying in texture, phosphorus content and frequency of deposition[J]. Environmental and Experimental Botany, 1998, 40(1): 43–58.

    Article  Google Scholar 

  126. PAN Y., XIE Y. and CHEN X. et al. Effects of flooding and sedimentation on the growth and physiology of two emergent macrophytes from Dongting Lake wetlands[J]. Aquatic Botany, 2012, 100: 35–40.

    Article  Google Scholar 

  127. BLACK K. S., TOLHURST T. J. and PATERSON D. M. et al. Working with natural cohesive sediments[J]. Journal of Hydraulic Engineering, ASCE, 2002, 128(1): 2–8.

    Article  Google Scholar 

  128. EL GANAOUI O., SCHAAFF E. and BOYER P. et al. The deposition and erosion of cohesive sediments determined by a multi-class model[J]. Estuarine, Coastal and Shelf Science, 2004, 60(3): 457–475.

    Article  Google Scholar 

  129. LEONARD L. A., REED D. J. Hydrodynamics and sediment transport through tidal marsh canopies[J]. Journal of Coastal Research, 2002, 36(2): 459–469.

    Google Scholar 

  130. LEONARD L., CROFT A. and CHILDERS D. et al. Characteristics of surface-water flows in the ridge and slough landscape of Everglades National Park: Implications for particulate transport[J]. Hydrobiologia, 2006, 569(1): 5–22.

    Article  Google Scholar 

  131. SAIERS J. E., HARVEY J. W. and MYLON S. E. Surface-water transport of suspended matter through wetland vegetation of the Florida everglades[J]. Geophysical Research Letters, 2003, 30(19): HLS 3-1-HLS 3–5.

    Google Scholar 

  132. WANG Chao, ZHANG Wei-min and WANG Pei-fang et al. Effect of submerged vegetation on the flowing structure and the sediment resuspension under different wind-wave movement conditions[J]. Journal of Safety and Environment, 2014, 14(2): 107–111(in Chinese).

    Article  Google Scholar 

  133. WU D., HUA Z. The effect of vegetation on sediment resuspension and phosphorus release under hydrodynamic disturbance in shallow lakes[J]. Ecological Engineering, 2014, 69: 55–62.

    Article  Google Scholar 

  134. TERRADOS J., DUARTE C. M. Experimental evidence of reduced particle resuspension within a seagrass (Posidonia oceanica L.) meadow[J]. Journal of Experimental Marine Biology and Ecology, 2000, 243(1): 45–53.

    Article  Google Scholar 

  135. HARVEY J. W., NOE G. B. and LARSEN L. G. et al. Field flume reveals aquatic vegetation’s role in sediment and particulate phosphorus transport in a shallow aquatic ecosystem[J]. Geomorphology, 2011, 126(3): 297–313.

    Article  Google Scholar 

  136. ISSELIN-NONDEDEU F., BÉDÉCARRATS A. Influence of alpine plants growing on steep slopes on sediment trapping and transport by runoff[J]. Catena, 2007, 71(2): 330–339.

    Article  Google Scholar 

  137. HAUSSMANN N. S., MCGEOCH M. A. and BOEL-HOUWERS J. C. Interactions between a cushion plant (Azorella selago) and surface sediment transport on sub-Antarctic Marion Island[J]. Geomorphology, 2009, 107(3–4): 139–148.

    Article  Google Scholar 

  138. XIE Yi-fa, HU Yao-zheng and LIU Zheng-wen et al. Effects of sediment resuspension on the growth of submerged plants[J]. Acta Scientiae Circumstantiae, 2007, 27(1): 18–22(in Chinese).

    Google Scholar 

  139. ZHANG Lan-fang, ZHU Wei and CAO Jia-shun et al. Effect of suspended matter in the polluted water on the growth of potamogeton crispus[J]. Journal of Lake Sciences, 2006, 18(1): 73–78(in Chinese).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-fang Wang  (王沛芳).

Additional information

Project supported by the National Science Funds for Creative Research Groups of China (Grant No. 51421006), the National Science Fund for Distinguished Young Scholars (Grant No. 51225901), the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT13061), the QingLan Project for Innovation Team of Jiangsu Province, and PAPD.

Biography: WANG Chao (1958-), Male, Ph. D., Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zheng, Ss., Wang, Pf. et al. Interactions between vegetation, water flow and sediment transport: A review. J Hydrodyn 27, 24–37 (2015). https://doi.org/10.1016/S1001-6058(15)60453-X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(15)60453-X

Key words

Navigation