Skip to main content
Log in

Some Theorems in the Theory of Microstretch Thermomagnetoelectroelasticity

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The linear dynamic theory of microstretch thermomagnetoelectroelasticity is studied in this paper. First, a reciprocity relation which involves two processes at different instants is established to form the basis of a uniqueness result and a reciprocal theorem. The proof of the reciprocal theorem avoids both using the Laplace transform and incorporating the initial conditions into the equations of motion. The uniqueness theorem is derived with no definiteness assumption on the elastic constitutive coefficients. Then the continuous dependence theorem is discussed upon two external data systems. Finally, the variational principle of Hamilton type which fully characterizes the solution of the mixed boundary-initial-value problem (mixed problem) is obtained. These theorems lay a solid foundation for further theoretical and numerical studies on microstretch thermomagnetoelectroelastic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borrelli, A. and Patria, M.C., Uniqueness and reciprocity in the boundary-initial value problem for a mixture of two elastic solids occupying an unbounded domain. Acta Mechanica, 1983, 46(1–4): 99–109.

    Article  MathSciNet  Google Scholar 

  2. Luo, E. and Cheung, Y.K., On the variational principles in linear elastodynamics. Acta Mechanica Sinica, 1988, 4(4): 337–349.

    Article  MathSciNet  Google Scholar 

  3. Aouadi, M., Uniqueness and reciprocity theorems in the theory of generalized thermoelastic diffusion. Journal of Thermal Stresses, 2007, 30(7): 665–678.

    Article  MathSciNet  Google Scholar 

  4. El-Karamany, A.S. and Ezzat, M.A., Convolutional variational principle, reciprocal and uniqueness theorems in linear fractional two-temperature thermoelasticity. Journal of Thermal Stresses, 2011, 34(3): 264–284.

    Article  Google Scholar 

  5. Iesan, D., Reciprocity, uniqueness and minimum principles in the linear theory of piezoelectricity. International Journal of Engineering Science, 1990, 28(11): 1139–1149.

    Article  MathSciNet  Google Scholar 

  6. Hadjesfandiari, A.R., Size-dependent piezoelectricity. International Journal of Solids and Structures, 2013, 50(18): 2781–2791.

    Article  Google Scholar 

  7. Nowacki, W., Some general theorems of thermopiezoelectricity. Journal of Thermal Stresses, 1978, 1(2): 171–182.

    Article  Google Scholar 

  8. Iesan, D., On some theorems in thermopiezoelectricity. Journal of Thermal Stresses, 1989, 12(2): 209–223.

    Article  MathSciNet  Google Scholar 

  9. Nan, C.W., Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Physical Review B, 1994, 50(9): 6082–6088.

    Article  Google Scholar 

  10. Avellaneda, M. and Harshe, G., Magnetoelectric effect in piezoelectric/magnetostrictive multilayer (2-2) composite. Journal of Intelligent Material Systems and Structures, 1994, 5(4): 501–513.

    Article  Google Scholar 

  11. Steigmann, D.J., Equilibrium theory for magnetic elastomers and magnetoelastic membranes. International Journal of Non-Linear Mechanics, 2004, 39(7): 1193–1216.

    Article  Google Scholar 

  12. Luo, E., Zhu, H.J. and Yuan, L., Unconventional Hamilton-type variational principles for electromagnetic elastodynamics. Science in China Series G, 2006, 49(1): 119–128.

    Article  Google Scholar 

  13. Feng, W.J., Pan, E., Wang, X. and Gazonas, G., A second-order theory for magnetoelectroelastic materials with transverse isotropy. Smart Materials and Structures, 2009, 18(2): 025001.

    Article  Google Scholar 

  14. Altay, G. and Dökmeci, M.C., On the fundamental equations of electromagnetoelastic media in variational form with an application to shell/laminae equations. International Journal of Solids and Structures, 2010, 47(3): 466–492.

    Article  Google Scholar 

  15. Amendola, G., Linear stability for a thermoelectromagnetic material with memory. Quarterly of Applied Mathematics, 2001, 54(1): 67–84.

    Article  MathSciNet  Google Scholar 

  16. Aboudi, J., Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites. Smart Materials and Structures, 2001, 10(5): 867–877.

    Article  MathSciNet  Google Scholar 

  17. Li, J.Y., Uniqueness and reciprocity theorems for linear thermo-electro-magneto-elasticity. The Quarterly Journal of Mechanics and Applied Mathematics, 2003, 56(1): 35–43.

    Article  MathSciNet  Google Scholar 

  18. Aouadi, M., On the coupled theory of thermo-magnetoelectroelasticity. The Quarterly Journal of Mechanics and Applied Mathematics, 2007, 60(4): 443–456.

    Article  MathSciNet  Google Scholar 

  19. Aouadi, M., Aspects of uniqueness in micropolar piezoelectric bodies. Mathematics and Mechanics of Solids, 2008, 13: 499–512.

    Article  MathSciNet  Google Scholar 

  20. Luo, E. and Li, W.H., Some basic principles for the linear theory of piezoelectric micropolar elastodynamics. Science in China Series G, 2010, 53(6): 1094–1100.

    Article  Google Scholar 

  21. Eringen, A.C., Theory of thermo-microstretch elastic solids. International Journal of Engineering Science, 1990, 28(12): 1291–1304.

    Article  MathSciNet  Google Scholar 

  22. Iesan, D., On the microstretch piezoelectricity. International Journal of Engineering Science, 2006, 44(13): 819–829.

    Article  MathSciNet  Google Scholar 

  23. Iesan, D. and Quintanilla, R., Some theorems in the theory of microstretch thermopiezoelectricity. International Journal of Engineering Science, 2007, 45(1): 1–16.

    Article  MathSciNet  Google Scholar 

  24. Eringen, A.C., Electromagnetic theory of microstretch elasticity and bone modeling. International Journal of Engineering Science, 2004 42(3): 231–242.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenJie Feng.

Additional information

Project supported by the National Natural Science Fundation of China (Nos. 11572358 and 11272223) and the Training Program for Leading Talent in University Innovative Research Team in Hebei Province (No. LJRC006).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Feng, W. Some Theorems in the Theory of Microstretch Thermomagnetoelectroelasticity. Acta Mech. Solida Sin. 29, 145–158 (2016). https://doi.org/10.1016/S0894-9166(16)30103-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(16)30103-3

Key Words

Navigation