Skip to main content
Log in

Numerical Solutions for a Nearly Circular Crack with Developing Cusps under Shear Loading

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

In this paper, we study the behavior of the solution at the crack edges for a nearly circular crack with developing cusps subject to shear loading. The problem of finding the resulting force can be written in the form of a hypersingular integral equation. The equation is then transformed into a similar equation over a circular region using conformal mapping. The equation is solved numerically for the unknown coefficients, which will later be used in finding the stress intensity factors. The sliding and tearing mode stress intensity factors are evaluated for cracks and displayed graphically. Our results seem to agree with the existing asymptotic solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kassir, M.K. and Sih, G.C., Three-dimensional Crack Problem, Mechanics of Fracture. Vol. 2. Sih, G.C., editor. The Netherlands: Noordhoff, Leyden, 1975.

  2. Zhu, X.K., Liu, G.T. and Chao, Y.J., Three-dimensional stress and displacement fields near an elliptical crack front. International Journal of Fracture, 2001, 109(4): 383–401.

    Article  Google Scholar 

  3. Sneddon, I.N., The stress intensity factor for a flat elliptical crack in an elastic solid under uniform tension. International Journal of Engineering Science, 1979, 17: 185–191.

    Article  MathSciNet  Google Scholar 

  4. Smith, R.N.L., Stresses from arbitrary loads on a penny-shaped crack. International Journal for Numerical Methods in Engineering, 1984, 20(11): 2093–2105.

    Article  Google Scholar 

  5. Chen, Y.Z. and Lee, K.Y., Numerical solution of three-dimensional crack problem by using hypersingular integral equation. Computer Methods in Applied Mechanics and Engineering, 2001, 190(31): 4019–4026.

    Article  Google Scholar 

  6. Chen, M.C., Application of finite-part integrals to three-dimensional fracture problems for piezoelectric media Part II: Numerical analysis. International Journal of Fracture, 2003, 121: 141–161.

    Google Scholar 

  7. Nik Long N.M.A. and Eshkuvatov, Z.K., Hypersingular integral equation for multiple curved cracks problem in plane elasticity. International Journal of Solids and Structures, 2009, 46: 2611–2617.

    Article  Google Scholar 

  8. Gao, H. and Rice, J.R., Shear stress intensity factors for a planer crack with slightly curved front. Journal of Applied Mechanics, 1986, 53: 774–778.

    Article  Google Scholar 

  9. Xie, C., Liu, Y.W., Fang, Q.H. and Deng, M., Cracking characteristics of mixed mode dislocations near a lip-like mode crack. Theoretical and Applied Fracture Mechanics, 2009, 51: 139–143.

    Article  Google Scholar 

  10. Bui, H.D., Application des potentiels éalastiques àl’étude des fissures planes de forme arbitraire en milieu tridimensionnel. In: Comptes Rendus MathSématique AcadSémie des Sciences, Paris AcadSémie des Sciences, Paris, 1975, Sérrie A 280: 1157–1160.

    Google Scholar 

  11. Kassir, M.K., Stress-intensity factor for a three dimensional rectangular crack. Journal of Applied Mechanics, Transactions ASME, 1981, 48(2): 309–312.

    Article  Google Scholar 

  12. Kassir, M.K., A three dimensional rectangular crack subjected to shear loading. International Journal of Solids and Structures, 1982, 18: 1075–1082.

    Article  Google Scholar 

  13. Murakami, Y., Application of the body force method to the calculation of stress intensity factors for a crack in the arbitrarily shaped plate. Engineering Fracture Mechanics, 1978, 10(3): 497–513.

    Article  Google Scholar 

  14. Makoto, I., Hideto, T. and Hiroshi, N., New method of analysis of three dimensional crack problems. Memoirs of the Kyushu University, Faculty of Engineering, 1983, 43(4): 317–334.

    Google Scholar 

  15. Qin, T.Y., Zhu, B.J. and Noda, N.A., Mixed-mode stress intensity factors of a three-dimensional crack in a bonded bimaterial. Engineering Computations: International Journal for Computer-Aided Engineering and Software, 2008, 25(3): 251–267.

    Article  Google Scholar 

  16. Ioakimidis, N.I., Two methods for the numerical solution of Bueckner’s singular integral equation for plane elasticity crack problems. Computer Methods in Applied Mechanics and Engineering, 1982, 31: 169–177.

    Article  MathSciNet  Google Scholar 

  17. Rice, J.R., First order variation in elastic fields due to variation in location of a planar crack front. Journal of Applied Mechanics, Transactions ASME, 1985, 52(3): 571–579.

    Article  Google Scholar 

  18. Bueckner, H.F., A novel principle for the computation of stress intensity factors. Zeitschrift für Angewandte Mathematik und Mechanik, 1970, 50: 529–546.

    MathSciNet  MATH  Google Scholar 

  19. Rice, J.R., Some remarks on elastic crack-tip stress fields. International Journal of Solids and Structures, 1972, 8: 751–758.

    Article  Google Scholar 

  20. Gao, H. and Rice, J.R., Somewhat ciruclar tensile crack. International Journal of Fracture, 1987, 33: 155–174.

    Article  MathSciNet  Google Scholar 

  21. Gao, H., Nearly circular shear mode cracks. International Journal of Solids and Structures, 1988, 24: 177–193.

    Article  Google Scholar 

  22. Rice, J.R. Weight function theory for three-dimensional elastic crack analysis. In: Wei, R.P. and Gangloff, R.P., editors, Fracture Mechanics: Perspectives and Directions (Twentieth Symposium) American Society Testing and Materials, 1989: 29–57.

  23. Bowers, A.F. and Ortiz, M., Solution of three-dimensional crack problems by a finite perturbation method. Journal of the Mechanics and Physics of Solids, 1990, 38(4): 433–480.

    MathSciNet  Google Scholar 

  24. Qin, T.Y. and Tang, R.J., Finite-part integral and boundary element method to solve flat crack problems. Applied Mathematics and Mechanics, 1992, 13(12): 1089–1095.

    Article  Google Scholar 

  25. Wang, Y.B., A new boundary integral equation method of three-dimensional crack analysis. International Journal of Fracture, 1993, 63(4): 317–328.

    Article  Google Scholar 

  26. Wang, Y.B., The problem of an external circular crack under asymmetric loadings. Applied Mathematics and Mechanics, 2001, 22(1): 10–16.

    Article  Google Scholar 

  27. Theotokoglou, E.E., Boundary integral equation method to solve embedded planar crack problems under shear loading. Computational Mechanics, 2004, 33(5): 327–333.

    Article  MathSciNet  Google Scholar 

  28. Wang, Y.B. and Sun, Y.Z., A new boundary integral equation method for cracked 2-D anisotropic bodies. Engineering Fracture Mechanics, 2005, 72(13): 2128–2143.

    Article  Google Scholar 

  29. Grasa, J., Bea, J.A., Rodríguez, J.F. and Doblaré, M., The perturbation method and the extended finite element method. An application to fracture mechanics problems. Fatigue and Fracture of Engineering Materials and Structures, 2006, 29(8): 581587.

    Article  Google Scholar 

  30. Nistora, I., Olivier, P. and Caperaaa, S., Numerical implementation of the eXtended Finite Element Method for dynamic crack analysis. Advances in Engineering Software, 2008, 39(7): 573–587.

    Article  Google Scholar 

  31. Zamani, A. and Eslami, M.R., Implementation of the extended finite element method for dynamic thermoelastic fracture initiation. International Journal of Solids and Structures, 2010, 47(10): 1392–1404.

    Article  Google Scholar 

  32. Mi, Y. and Aliabadi, M.H., Dual boundary element method for three-dimensional fracture mechanics analysis. Engineering Analysis with Boundary Elements, 1992, 10(2): 161–171.

    Article  Google Scholar 

  33. Wu, W.L., Dual boundary element method applied to antiplane crack problems. Mathematical Problems in Engineering, 2009, 2009: 10 Pages.

    MathSciNet  MATH  Google Scholar 

  34. Leonel, E.D. and Venturini, W.S., Dual boundary element formulation applied to analysis of multi-fractured domains. Engineering Analysis with Boundary Elements, 2010, 34(12): 1092–1099.

    Article  MathSciNet  Google Scholar 

  35. Martin, P.A., Mapping flat cracks onto penny-shaped cracks: shear loadings. Journal of the Mechanics and Physics of Solids, 1995, 43(2): 275–294.

    Article  MathSciNet  Google Scholar 

  36. Martin, P.A., Mapping flat cracks onto penny-shaped cracks, with application to somewhat circular tensile cracks. Quarterly of Applied Mathematics, 1996, 54: 663–675.

    Article  MathSciNet  Google Scholar 

  37. Martin, P.A., The discontinuity in the elastostatic displacement vector across a penny-shaped crack under arbitrary loads. Journal of Elasticity, 1982, 12(2): 201–218.

    Article  MathSciNet  Google Scholar 

  38. Guidera, J.T. and Lardner, R.W., Penny-shaped cracks. Journal of Elasticity, 1975, 5(1): 59–73.

    Article  Google Scholar 

  39. Martin, P.A., Exact solution of a simple hypersingular integral equation. Journal of Integral Equations and Applications, 1992, 4(2): 197–204.

    Article  MathSciNet  Google Scholar 

  40. Ioakimidis, N.I., Two-dimensional principal value hypersingular integrals for crack problems in three-dimensional elasticity. Acta Mechanica, 1990, 82(1–2): 129–134.

    Article  MathSciNet  Google Scholar 

  41. Hadamard, J., Lectures on Cauchy’s Problem: In Linear Partial Differential Equations. Dover Publications, 2003.

  42. Krenk, S., A circular crack under asymmetric loads and some related integral equations. Journal of Applied Mechanics, Transactions ASME, 1979, 46(4): 821–826.

    Article  Google Scholar 

  43. Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.G., Higher Transcendantal Functions. Vol. 2. New York: McGraw-Hill, 1953.

    MATH  Google Scholar 

  44. Ahlfors, L.V., Complex Analysis. 2nd ed. New York: McGraw-Hill, 1966.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. A. Nik Long.

Additional information

This project is supported by the Ministry Of Higher Education Malaysia for the Fundamental Research Grant scheme, project No. 01-04-10-897FR and the NSF scholarship. The authors would like to thanks the reviewers for the constructive comments to improve the quality of the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nik Long, N.M.A., Koo, L.F. & Eshkuvatov, Z.K. Numerical Solutions for a Nearly Circular Crack with Developing Cusps under Shear Loading. Acta Mech. Solida Sin. 24, 439–449 (2011). https://doi.org/10.1016/S0894-9166(11)60043-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(11)60043-8

Key words

Navigation