Skip to main content
Log in

Natural and synthetic acridines/acridones as antitumor agents: their biological activities and methods of synthesis

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Acridine derivatives constitute a class of compounds that are being intensively studied as potential anticancer drugs. Acridines are well-known for their high cytotoxic activity; however, their clinical application is limited or even excluded because of side effects. Numerous synthetic methods are focused on the preparation of target acridine skeletons or modifications of naturally occurring compounds, such as acridone alkaloids, that exhibit promising anticancer activities. They have been examined in vitro and in vivo to test their importance for cancer treatment and to establish the mechanism of action at both the molecular and cellular level, which is necessary for the optimization of their properties so that they are suitable in chemotherapy. In this article, we review natural and synthetic acridine/acridone analogs, their application as anticancer drugs and methods for their preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette protein superfamily

ABCG2:

ATP-binding cassette, sub-family G (WHITE), member 2

CAN:

ceric ammonium nitrate

CDI:

1,1’-carbonyldiimidazole

DIPEA:

N,N-diisopropylethylamine

DMF:

N,N-dimethylformamide

DMP:

Dess-Martin reagent

EDCI:

1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride

HOBt:

1-hydroxybenzotriazole

IC50:

drug concentration at which 50% inhibition is observed

MDP:

N-acetyl-muramyl-L-alanyl-D-isoglutamine (muramyl dipeptide)

MS:

molecular sieves

NAD+:

nicotinamide adenine dinucleotide

NBS:

N-bromosuccinimide, NMO - N-methylmorpholine N-oxide

nor-MDP:

N-acetyl-nor-muramyl-L-alanyl-D-isoglutamine (nor-muramyl dipeptide)

ODNs:

oligodeoxynucleotides

PBO:

benzoyl peroxide, P-gp - P-glycoprotein

PTSA:

p-toluenesu-lfonic acid

TBS:

t-butyldimethylsilyl

TEBAC:

triethylben-zylammonium chloride

TMS:

trimethylsilyl

Topo:

topoisomerase

TPAP:

tetrapropyl ammoniumperruthenate

References

  1. Adams A, Guss JM, Denny WA, Wakelin LPG: Crystal structure of 9-amino-N-[2-(4-morpholinyl)ethyl]-4—acridinecarboxamide bound to d(CGTACG)2: implications for structure-activity relationships of acridinecar-boxamide topoisomerase poisons. Nucleic Acids Res, 2002, 30, 719–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Afloroaei C, Vlassa M, Panea I: New 9-substituted acridine derivatives with potential antitumor activity. Rev Chim, 2004, 55, 536–538.

    CAS  Google Scholar 

  3. Akanitapichat P, Bastow KF: The antiviral agent 5-chloro-1,3-dihydroxyacridone interferes with assembly and maturation of herpes simplex virus. Antiviral Res, 2002, 53, 113–126.

    Article  CAS  PubMed  Google Scholar 

  4. Albert A: The Acridines, 2nd edn., Edward Arnold Publishers, Ltd., London, 1966.

    Google Scholar 

  5. Amato J, Galeone A, Oliviero G, Mayol L, Piccialli G, Varra M: Synthesis of 3’-3’-linked pyrimidine oligonu-cleotides containing an acridine moiety for alternate strand triple helix formation. Eur J Org Chem, 2004, 2331–2336.

    Google Scholar 

  6. Anderson MO, Sherrill J, Madrid PB, Liou AP, Weisman JL, DeRisi JL, Guy K: Parallel synthesis of 9-aminoacridines and their evaluation against chloroquine-resistant Plasmo-dium falciparum. Bioorg Med Chem, 2006, 14, 334–343.

    Article  CAS  PubMed  Google Scholar 

  7. Antonini I: DNA-binding antitumor agents: from pyrim-ido[5,6,1-de]acridines to other intriguing classes of acridine derivatives. Curr Med Chem, 2002, 9, 1701–1716.

    CAS  PubMed  Google Scholar 

  8. Antonini I, Polucci P, Kelland LR, Menta E, Pescalli N, Martelli S: 2,3-Dihydro-1H,7H-pyrimido[5,6,1-de]acridine-1,3,7-trione derivatives, a class of cytotoxic agents active on multidrug-resistant cell lines: Synthesis, biological evaluation, and structure-activity relationships. J Med Chem, 1999, 42, 2535–2541.

    Article  CAS  PubMed  Google Scholar 

  9. Antonini I, Polucci P, Magnano A, Gatto B, Palumbe M, Menta E, Pescalli N et al.: Design, Synthesis, and Biological Properties of New Bis(acridine-4-carboxamides) as Anticancer Agents. J Med Chem, 2003, 46, 3109–3115.

    Article  CAS  PubMed  Google Scholar 

  10. Antonini I, Polucci P, Magnano A, Sparapani S, Martelli, S: Rational Design, Synthesis, and biological evaluation of bis(pyrimido[5,6,1-de]acridines) and bis(pyra-zolo[3,4,5-kl]acridine-5-carboxamides) as new antican-cer agents. J Med Chem, 2004, 47, 5244–5250.

    Article  CAS  PubMed  Google Scholar 

  11. Antonini I, Santoni G, Lucciarini R, Amantini C, Sparapani S, Magnano A: Synthesis and biological evaluation of new asymmetrical bisintercalators as potential antitumor drugs. J Med Chem, 2006, 49, 7198–7207.

    Article  CAS  PubMed  Google Scholar 

  12. Asche C, Dumy P, Carres D, Croisy A, Demeunynck M: Nitrobenzylcarbamate prodrugs of cytotoxic acridines forpotential use with nitroreductase gene-directed enzyme prodrug therapy. Biorg Med Chem Lett, 2006, 16, 1990–1994.

    Article  CAS  Google Scholar 

  13. Ashok BT, Tadi K, Banerjee D, Konopa J, Iatropoulos M, Tiwari RK: Preclinical toxicology and pathology of 9-(2’-hydroxyethylamino)-4-methyl-1-nitroacridine (C-1748), a novel anti-cancer agent in male beagle dogs. Life Sci 2006, 79, 1334–1342.

    Article  CAS  PubMed  Google Scholar 

  14. Ashok BT, Tadi K, Garikapaty VP, Chen Y, Huang Q, Banerjee D, Konopa J, Tiwari RK: Preclinical toxico-logical examination of a putative prostate cancer-specific 4-methyl-1-nitroacridine derivative in rodents. Antican-cer Drugs, 2007, 18, 87–94.

    Article  CAS  Google Scholar 

  15. Atwell GJ, Cain BF, Seelye RN: Potential antitumor agents. 12. 9-Anilinoacridines. J Med Chem, 1972, 15, 611–615.

    Article  CAS  PubMed  Google Scholar 

  16. Atwell GJ, Rewcastle GW, Baguley BC, Denny WA: Potential antitumor agents. 48. 3’-dimethylamino derivatives of amsacrine: Redox chemistry and in vivo solid tumor activity. J Med Chem, 1987, 30, 652–658.

    CAS  PubMed  Google Scholar 

  17. Bacherikov VA, Chang JY, Lin YW, Chen CH, Pan WY, Dong H, Lee RZ, et al.: Synthesis and antitumor activity of 5-(9-acridinylamino)anisidine derivatives. Bioorg Med Chem, 2005, 13, 6513–6520.

    Article  CAS  PubMed  Google Scholar 

  18. Bahr N, Tierney E, Reymond J-L: Highly pPhotoresis-tant chemosensors using acridone as fluorescent label. Tetrahedron Lett, 1997, 38, 1489–1492.

    Article  CAS  Google Scholar 

  19. Belmont P, Andrez J-Ch, Allan Ch SM: New methodology for acridine synthesis using a rhodium-catalyzed benzannulation. Tetrahedron Lett, 2004, 45, 2783–2786.

    Article  CAS  Google Scholar 

  20. Belmont P, Bosson J, Godet T, Tiano M: Acridine and acridone derivatives, anticancer properties and synthetic methods: Where are we now? Anti-Cancer Agents Med Chem, 2007, 7, 139–169.

    Article  CAS  Google Scholar 

  21. Belmont P, Dorange I: Acridine/acridone: a simple scaffold with a wide range of application in oncology. Expert Opin Ther Patents, 2008, 18, 1211–1224.

    Article  CAS  Google Scholar 

  22. Bongui J-B, Elomri A, Cahard D, Tillequin F, Pfeiffer B, Pierré A, Seguin E: Synthesis and cytotoxic activity of acronycine analogues in the benzo[c]pyrano[3,2-h]-acridin-7-one and naphtho[1,2-b][1,7] and [1,10]-phenanthrolin-7(14H)-one series. Chem Pharm Bull, 2005, 53, 1540–1546.

    Article  CAS  Google Scholar 

  23. Borowski E, Bontemps-Gracz MM, Piwkowska A: Strategies for overcoming ABC-transporters-mediated multidrug resistance (MDR) of tumor cells. Review. Acta Biochim Polon, 2005, 52, 609–627.

    Article  CAS  PubMed  Google Scholar 

  24. Bouffier L, Baldeyrou B, Hildebrand M-P, Lansiaux A, David-Cordonnier M-H, Carrez D et al.: Amino- and glycoconjugates of pyrido[4,3,2-kl]acridine. Synthesis, antitumor activity, and DNA binding. Bioorg Med Chem, 2006, 14, 7520–7530.

    CAS  PubMed  Google Scholar 

  25. Bouffier L, Demeunynck M, Milet A, Dumy P: Reactivity of pyrido[4,3,2-kl]acridines: Regioselective formation of 6-substituted derivatives. J Org Chem, 2004, 69, 8144–8147.

    Article  CAS  PubMed  Google Scholar 

  26. Boumendjel A, Macalou S, Ahmed-Belkacem A, Blanc M, Di Pietro, A: Acridone derivatives: Design, synthesis, and inhibition of breast cancer resistance protein ABCG2. Bioorg Med Chem, 2007, 15, 2892–2897.

    Article  CAS  PubMed  Google Scholar 

  27. Bousquet PF, Brańa MF, Conlon D, Fitzgerald KM, Perron D, Cocchiaro C, Miller R et al.: Preclinical Evaluation of LU 79553: A novel bis-naphthalimide with potent antitumor activity. Cancer Res, 1995, 55, 1176–1180.

    CAS  PubMed  Google Scholar 

  28. Campbell NH, Parkinson GN, Reszka AP, Neidle S: Structural basis of DNA quadruplex recognition by an acridine drug. J Am Chem Soc, 2008, 130, 6722.

    Article  CAS  PubMed  Google Scholar 

  29. Capps DB: Substituted 1-amino-4-nitro-acridinones, pharmaceutical compositions comprising the same and processes for their production. Eur Patent, 145226, 1984, Chem Abstr, 1985, 103, 215182s. Capps DB: Pyra-zolo(3,4,5-kl)acridine compounds, pharmaceutical compositions comprising the same and processes for their production. Eur Patent, 138302, 1984, Chem Abstr 1985, 103, 196074.

    Google Scholar 

  30. Chang JY, Lin CF, Pan WY, Bacherikov V, Chou TC, Chen CH, Dong H et al.: New analogues of AHMA as potential antitumor agents: Synthesis and biological activity. Bioorg Med Chem, 2003, 1, 4959–4969.

    Article  CAS  Google Scholar 

  31. Charmantray F, Demeunynck M, Carres D, Croisy A, Lansiaux A, Bailly Ch, Colson P: 4-Hydroxymethyl-3-aminoacridine derivatives as a new family of anticancer agents. J Med Chem, 2003, 46, 967–977.

    Article  CAS  PubMed  Google Scholar 

  32. Chiron J, Galy J-P: Reactivity of the acridine ring: A review. Synthesis, 2004, 313–325.

    Google Scholar 

  33. Cholody WM, Hernandez L, Hassner L, Scudiero DA, Djurickovic DB, Michejda CJ: Bisimidazoacridones and related compounds: New antineoplastic agents with high selectivity against colon tumors. J Med Chem, 1995, 38, 3043–3052.

    Article  CAS  PubMed  Google Scholar 

  34. Cholody MW, Martelli S, Łukowicz J, Konopa J: 5-[(Aminoalkyl)amino]imidazo[4,5,1-de]acridin-6-ones as a novel class of antineoplastic agents. Synthesis and biological activity. J Med Chem, 1990, 33, 49–52.

    CAS  PubMed  Google Scholar 

  35. Cortés EC, Garcia CL, Montes KS, Obregon RS, Maya SC, de Cortés OGM: Synthesis and spectral properties of 7-(p-bromophenyl)-10,10-dimethyl-8-alkylthio-7,9,10,11-tetrahydro-benz[c]acridines and deprotection-aromatization of 7-[(o-; and p-subst-ituted)phenyl]-10,10-dimethyl-7,8,9,10,11,12-hexa-hydrobenz[c]acridin-8-thione. J Heterocycl Chem, 2007, 44, 39–48.

    Article  Google Scholar 

  36. Costes N, Le Deit H, Michel S, Tillequin F, Koch M, Pfeiffer B, Renard P et al.: Synthesis and cytotoxic and antitumor activity of benzo[b]pyrano[3,2-h]acridin-7-one analogues of acronycine. J Med Chem, 2000, 43, 2395–2402.

    Article  CAS  PubMed  Google Scholar 

  37. Dai J, Zhou Q: Convenient synthesis of an N-(1-alkoxyl-9-fluorenyl)serine acridine conjugate. Synth Commun, 2007, 37, 129–135.

    Article  CAS  Google Scholar 

  38. Delfourne E, Kiss R, Le Corre L, Merza J, Bastide J, Frydman A, Darro F: Synthesis and in vitro antitumor activity of an isomer of the marine pyridoacridine alkaloid ascididemin and related compounds. Bioorg Med Chem, 2003, 11, 4351–4356.

    Article  CAS  PubMed  Google Scholar 

  39. Demeunynck M: Antitumor acridines. Expert Opin Ther Pat, 2004, 14, 55–70.

    Article  CAS  Google Scholar 

  40. Demeunynck M, Charmantray F, Martelli A: Interest of acridine derivatives in the anticancer chemotherapy. Curr Pharm Des, 2001, 7, 1703–1724.

    Article  CAS  PubMed  Google Scholar 

  41. Denny WA: Acridine derivatives as chemotherapeutic agents. Curr Med Chem, 2002, 9, 1655–1665.

    Article  CAS  PubMed  Google Scholar 

  42. Denny WA, Baguley BC: Dual topoisomerase I/II inhibitors in cancer therapy. Curr Top Med Chem, 2003, 3, 339–353.

    Article  CAS  PubMed  Google Scholar 

  43. Dheyongera JP, Geldenhuys WJ, Dekker TG, Van der Schyf CJ: Synthesis, biological evaluation, and molecular modeling of novel thioacridone derivatives related to the anticancer alkaloid acronycine. Bioorg Med Chem, 2005, 13, 689–698.

    Article  CAS  PubMed  Google Scholar 

  44. Dzierzbicka K, Kołodziejczyk AM: Synthesis and antitumor activity of conjugates of muramyldipeptide or nor-muramyldipeptide with hydroxyacridine/acridone derivatives. J Med Chem, 2003, 46, 183–189.

    Article  CAS  PubMed  Google Scholar 

  45. Dzierzbicka K, Kołodziejczyk AM, Wysocka-Skrzela B, Myśliwski A, Sosnowska D: Synthesis and antitumor activity of conjugates of muramyldipeptide, normura-myldipeptide, and desmuramylpeptides with acridine/ac-ridone derivatives. J Med Chem, 2001, 44, 3606–3615.

    Article  CAS  PubMed  Google Scholar 

  46. Faller T, Hutton K, Okafo G, Gribble A, Camilleri P, Games DE: A novel acridone derivative for the fluorescence tagging and mass spectrometric sequencing of peptides. Chem Commun, 1997, 16, 1529–1530.

    Article  Google Scholar 

  47. Ferguson LR, Denny WA: Genotoxicity of non-covalent interactions: DNA intercalators. Mutat Res, 2007, 623, 14–23.

    Article  CAS  PubMed  Google Scholar 

  48. Fujiwara M, Okamoto M, Okamoto M, Watanabe M, Machida H, Shigeta S, Konno K et al.: Acridone derivatives are selective inhibitors of HIV-1 replication in chronically infected cells. Antiviral Res, 1999, 43, 189–199.

    Article  CAS  PubMed  Google Scholar 

  49. Gaslonde T, Michel S, Koch M, Pfeiffer B, Léonce S, Pierré A, Tillequin F: Synthesis and cytotoxic cctivity of dimeric analogs of acronycine in the benzo[b]pyrano-[3,2-h]acridin-7-one series. Chem Pharm Bull, 2007, 55, 734–738.

    Article  CAS  Google Scholar 

  50. Géci I, Filichev VV, Pedersen EB: Synthesis of twisted intercalating nucleic acids possessing acridine derivatives. Thermal stability studies. Bioconjug Chem, 2006, 17, 950–957.

    Article  PubMed  CAS  Google Scholar 

  51. Gniazdowski M, Szmigiero L: Nitracrine and its congeners - An overview. Gen Pharmacol, 1995, 26, 473–481.

    Article  CAS  PubMed  Google Scholar 

  52. Gunaratnam M, Greciano O, Martins C, Reszka AP, Schultes CM, Morjani H, Riou J-F, Neidle S: Mechanism of acridine-based telomerase inhibition and telomere shortening. Biochem Pharmacol, 2007, 74, 679–689.

    Article  CAS  PubMed  Google Scholar 

  53. Hamy F, Brondani V, Florsheimer A, Stark W, Blommers MJJ, Klimkait T: A new class of HIV-1 Tat antagonist acting through Tat-TAR inhibition. Biochemistry, 1998, 37, 5086–5095.

    Article  CAS  PubMed  Google Scholar 

  54. Harrison RJ, Cuesta J, Chessari G, Read MA, Basra SK, Reszka AP, Morrell J et al.: Trisubstituted acridine derivatives as potent and selective telomerase inhibitors. J Med Chem, 2003, 46, 4463–4476.

    Article  CAS  PubMed  Google Scholar 

  55. Ishihara Y, Ito T, Saito H, Takano J: Reaction of acridine with pyrazolone derivatives. J. Heterocycl Chem, 2005, 42, 963–967.

    Article  CAS  Google Scholar 

  56. Kelland L: Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics - current status and future prospects. Eur J Cancer, 2005, 41, 971–979.

    Article  CAS  PubMed  Google Scholar 

  57. Konopa J, Wysocka-Skrzela B, Tiwari RK: 9-alkylamino-1-nitroacridine derivatives. 2003, Patent US6589961 (B2).

    Google Scholar 

  58. Kukowska-Kaszuba M, Dzierzbicka K: Synthesis and structure-activity studies of peptide-acridine/acridone conjugates. Curr Med Chem, 2007, 14, 3079–3104.

    Article  CAS  PubMed  Google Scholar 

  59. Lemke K, Wojciechowski M, Laine W, Bailly C, Colson P, Baginski M, Larsen AK, Skladanowski A: Induction of unique structural changes in guanine-rich DNA regions by the triazoloacridone C-1305, a topoisomerase II inhibitor with antitumor activities. Nucleic Acids Res, 2005, 33, 6034–6047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ma Z, Day C, Bierbach U: Unexpected reactivity of the 9-aminoacridine chromophore in guanidylation reactions. J Org Chem, 2007, 72, 5387–5390.

    Article  CAS  PubMed  Google Scholar 

  61. Magnano A, Sparapani S, Lucciarini R, Michela M, Amantini C, Santoni G, Antonini I: Synthesis and biological evaluation of indazolo[4,3-bc]-[1,5]naphthyri-dines(10-aza-pyrazolo[3,4,5-kl]acridines): a new class of antitumor agents. Bioorg Med Chem, 2004, 12, 5941–5947.

    Article  CAS  PubMed  Google Scholar 

  62. Martinez R, Chacon-Garcia I: The search of DNA-intercalators as antitumoral drugs: What it worked and what did not work. Curr Med Chem, 2005, 12, 127–151.

    Article  CAS  PubMed  Google Scholar 

  63. Martins C, Gunaratnam M, Stuart J, Makwana V, Greciano O, Reszka AP, Kelland LR, Neidle S: Structure-based design of benzylamino-acridine compounds as G-quadruplex DNA telomere targeting agents. Bioorg Med Chem Lett, 2007, 17, 2293–2298.

    Article  CAS  PubMed  Google Scholar 

  64. Mazerska Z, Mazerski J, Ledóchowski A: QSAR of acridines. II, Features of nitracrine analogs for high anti-tumor activity and selectivity on mice, searched by PCA and MRA methods. Anticancer Drug Des, 1990, 5, 169–187.

    CAS  PubMed  Google Scholar 

  65. Mazerska Z, Sowinski P, Konopa J: Molecular mechanism of the enzymatic oxidation investigated for imida-zoacridinone antitumor drug, C-1311. Biochem Pharmacol, 2003, 66, 1727–1736.

    Article  CAS  PubMed  Google Scholar 

  66. Michael PM: Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep, 2008, 25, 166–187.

    Article  CAS  PubMed  Google Scholar 

  67. Michael PM: Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep, 2007, 24, 223–246.

    Article  CAS  PubMed  Google Scholar 

  68. Michel S, Gaslonde T, Tillequin F: Benzo[b]acronycine derivatives: a novel class of antitumor agents. Eur J Med Chem, 2004, 39, 649–655.

    Article  CAS  PubMed  Google Scholar 

  69. Moore MJB, Schultes CM, Cuesta J, Cuenca F, Gunaratnam M, Tanious FA, Wilson WD, Neidle S: Trisubstituted acridines as G-quadruplex telomere targeting agents. Effects of extensions of the 3,6- and 9-side chains on quadruplex binding, telomerase activity, and cell proliferation. J Med Chem, 2006, 49, 582–599.

    CAS  PubMed  Google Scholar 

  70. Murugan P, Hwang KC, Thirumalai D, Ramakrishnan VT: Facile and simple route to the synthesis of condensed acridine systems. Synth Commun, 2005, 35, 1781–1788.

    Article  CAS  Google Scholar 

  71. Nadaraj V, Kalaivani S, Selvi ST: Onepot multicomponent synthesis of some novel acridines. Indian J Chem Sect B, 2007, 46, 1703–1706.

    Google Scholar 

  72. Narayanan R, Tiwari P, Inoa D, Ashok BT: Comparative analysis of mutagenic potency of 1-nitro-acridine derivatives. Life Sci, 2005, 77, 2312–2323.

    Article  CAS  PubMed  Google Scholar 

  73. Nimcová I, Nesmirák K, Kafková B, Sejbal J: Physico-chemical properties of 9-(alkylsulfanyl)- and 9-(arylsul-fanyl)acridine derivatives and their interaction with (2-hydroxypropyl)cyclodextrins. Collect Czechoslov Chem Commun, 2006, 71, 179–189.

    Article  CAS  Google Scholar 

  74. Nguyen TM, Sittisombut Ch, Boutefnouchet S, Michel S, Koch M, Tillequin F, Mazinghien R et al.: Synthesis, antitumor activity, and mechanism of action of benzo-[a]pyrano[3,2-h]acridin-7-one analogues of acronycine. J Med Chem 2006, 49, 3383–3394.

    Article  CAS  PubMed  Google Scholar 

  75. Nishio R, Wessely S, Sugiura M, Kobayashi S: Synthesis of acridone derivatives using polymer-supported palladium and scandium catalysts. J Comb Chem, 2006, 8, 459–461.

    Article  CAS  PubMed  Google Scholar 

  76. Ouberai M, Asche Ch, Carrez D, Croisy A, Dumy P, Demeunynck M: 3,4-Dihydro-1H-[1,3]oxazino[4,5-c]acridines as a new family of cytotoxic drugs. Bioorg Med Chem Lett, 2006, 16, 4641–4643.

    Article  CAS  PubMed  Google Scholar 

  77. Pawlak JW, Pawlak K, Konopa J: Cytotoxic and antitumor activity of 1-nitroacridines as an aftereffect of their interstrand DNA cross-linking. J Cancer Res, 1984, 44, 4289–4296.

    CAS  Google Scholar 

  78. Patin A, Belmont P: A new route to acridines: Pauson-Khand reaction on quinoline-bearing 1-en-7-ynes leading to novel tetrahydrocyclopenta[c]acridine-2,5-diones. Synthesis (Stuttg), 2005, 14, 2400–2406.

    Google Scholar 

  79. Perry PJ, Reszka AP, Wood AA, Read MA, Gowan SM, Dosanjh HS, Trent JO et al.: Human telomerase inhibition by regioisomeric disubstituted amidoanthracene-9,10-diones. J Med Chem, 1998, 41, 4873–4884.

    Article  CAS  PubMed  Google Scholar 

  80. Pleban K, Ecker GF: Inhibitors of P-glycoprotein - lead identification and optimisation. Mini Rev Med Chem, 2005, 5, 153–163.

    Article  CAS  PubMed  Google Scholar 

  81. Santelli-Rouvier Ch, Barret J-M, Farrell ChM, Sharples D, Hill BT, Barbe J: Synthesis of 9-acridinyl sulfur derivatives: sulfides, sulfoxides and sulfones. Comparison of their activity on tumor cells. Eur J Med Chem, 2004, 39, 1029–1038.

    CAS  PubMed  Google Scholar 

  82. Sebestik J, Hlavacek J, Stibor I: A role of the 9-amino-acridines and their conjugates in a life science. Curr Protein Pept Sci, 2007, 8, 471–483.

    Article  CAS  PubMed  Google Scholar 

  83. Stefańska B, Arciemiuk M, Bontemps-Gracz MM, Dzieduszycka M, Kupiec A, Martelli S, Borowski E: Synthesis and biological evaluation of 2,7-dihydro-3H-dibenzo[de,h]cinnoline-3,7-dione derivatives, a novel group of anticancer agents active on a multidrug resistant cell line. Bioorg Med Chem, 2003, 11, 561–572.

    Article  PubMed  Google Scholar 

  84. Stefańska B, Bontemps-Gracz MM, Antonini I, Martelli S, Arciemiuk M, Piwkowska A, Rogacka D, Borowski E: 2,7-Dihydro-3H-pyridazino[5,4,3-kl]acridin-3-one derivatives, novel type of cytotoxic agents active on multidrug-resistant cell lines. Synthesis and biological evaluation. Bioorg Med Chem, 2005, 13, 1969–1975.

    Article  PubMed  CAS  Google Scholar 

  85. Stefańska B, Dzieduszycka M, Bontemps-Gracz MM, Borowski E, Martelli S, Supino R, Pratesi G et al.: 8,11-Dihydroxy-6-[(aminoalkyl)amino]-7H- benzo[e]peri-midin-7-ones with activity in multidrug-resistant cell lines: Synthesis and antitumor evaluation. J Med Chem, 1999, 42, 3494–3501.

    Article  PubMed  CAS  Google Scholar 

  86. Su TL, Chou TC, Kim JY, Huang JT, Ciszewska G, Ren WY, Otter GM et al.: 9-Substituted acridine derivatives with long half-life and potent antitumor activity: Synthesis and structure-activity relationships. J Med Chem, 1995, 38, 3226–3235.

    Article  CAS  PubMed  Google Scholar 

  87. Su T-L, Lin Y-W, Chou T-Ch, Zhang X, Bacherikov VA, Chen Ch-H, Liu LF, Tsai TJ: Potent antitumor 9-anilino-acridines and acridines bearing an alkylating N-mustard residue on the acridine chromophore: Synthesis and biological activity. J Med Chem, 2006, 49, 3710–3718.

    Article  CAS  PubMed  Google Scholar 

  88. Tadi K, Ashok BT, Chen Y, Banerjee D, Wysocka-Skrzela B, Konopa J, Darzynkiewicz Z, Tiwari RK: Pre-clinical evaluation of 1-nitroacridine derived chemotherapeutic agent that has preferential cytotoxic activity towards prostate cancer. Cancer Biol Ther, 2007, 6, 1632–1637.

    Article  CAS  PubMed  Google Scholar 

  89. Thi Mai HD, Gaslonde T, Michel S, Koch M, Tillequin F, Bailly Ch, David-Cardonnier M-H et al.: Design, synthesis, and cytotoxic activity of michael acceptors and enol esters in the benzo[b]acronycine series. Chem Pharm Bull, 2005, 53, 919–922.

    Article  Google Scholar 

  90. Thi Mai HD, Gaslonde T, Michel S, Tillequin F, Koch M, Bongui J-B, Elomri A et al.: Structure-activity relationships and mechanism of action of antitumor benzo[b]pyrano[3,2-h]acridin-7-one acronycine analogues. J Med Chem, 2003, 46, 3072–3082.

    Article  PubMed  CAS  Google Scholar 

  91. Todd AK, Adams A, Thorpe JH, Denny WA, Cardin CJ: Major groove binding and “DNA-induced” fit in the intercalation of a derivative of the mixed topoisomerase I/II poison N-(2-(dimethylamino)ethyl)acridine-4-carboxamide (DACA) into DNA: X-ray structure com-plexed to d(CG(5-BrU)ACG)2 at 1.3-ANG resolution. J Med Chem, 1999, 42, 536–540.

    Article  CAS  PubMed  Google Scholar 

  92. Tu SJ, Li TJ, Zhang Y, Shi F, Xu JN, Wang Q, Zhang JP et al.: New reaction of Schiff base with dimedone: New method for the acridine derivatives under microwave irradiation. J Heterocycl Chem, 2007, 44, 83–88.

    Article  CAS  Google Scholar 

  93. Vis pè S, Vandenberghe I, Robin M, Annereau JP, Crèancier L, Pique V, Galy JP et al.: Novel tetra-acridine derivatives as dual inhibitors of topoisomerase II and the human proteasome. Biochem Pharmacol, 2007, 73, 1863–1872.

    Article  CAS  Google Scholar 

  94. Wang B, Bouffier L, Demeunynck M, Mailley P, Roget A, Livache T, Dumy P: New acridone derivatives for the electrochemical DNA-hybridisation labelling. Bioelec-trochemistry, 2004, 63, 233–237.

    Article  CAS  Google Scholar 

  95. Wang W, El-Deiry WS: Restoration of p53 to limit tumor growth. Curr Opin Oncol, 2008, 20, 90–96.

    Article  PubMed  CAS  Google Scholar 

  96. Wang WG, Ho WC, Dicker DT, MacKinnon C, Winkler JD, Marmorstein R, El-Deiry WS: Acridine derivatives activate p53 and induce tumor cell death through Bax. Cancer Biol Ther, 2005, 4, 893–898.

    Article  CAS  PubMed  Google Scholar 

  97. Wang XS, Zhang MM, Zeng ZS, Shi DQ, Tu SJ, Wie XY, Zong ZM: A clean procedure for synthesis of benzo[c]acridine derivatives: reaction of N-arylidene-naphthalen-1-amine with 5,5-dimethyl-1,3-cyclohexa-dione in aqueous medium. ARKIVOC, 2006, ii, 117–123.

    Google Scholar 

  98. Wesierska-Gadek J, Schloffer D, Gueorguieva M, Uhl M, Skladanowski A: Increased susceptibility of poly(ADP-ribose) polymerase-1 knockout cells to antitu-mor triazoloacridone C-1305 is associated with permanent G2 cell cycle arrest. Cancer Res, 2004, 64, 4487–4497.

    Article  CAS  PubMed  Google Scholar 

  99. WHO. Chronicle, World Health Organization, Geneva, 1976, 30, 11.

    Google Scholar 

  100. Wysocka-Skrzela B, Ledóchowski A, Radzikowski C: 1-Nitro-9-hydroxyalkylaminoacridines or their salts. Eur Patent Appl, 0038572, 1981, Chem Abstr, 1982, 96, 68847u.

    Google Scholar 

  101. Wysocka-Skrzela B, Ledóchowski A, Weltrowska G, Radzikowski C: Process for preparing aminoacid derivatives of 1-nitroacridine or their salts. Polish Patent Appl, 119667, 1983, Chem Abstr, 1984, 100, 210424a.

    Google Scholar 

  102. Yang P, Yang Q, Qian X: Novel DNA bisintercalators of isoquinolino[4,5-bc]acridines: design, synthesis and evaluation of cytotoxic activity. Tetrahedron, 2005, 61, 11895–11901.

    Article  CAS  Google Scholar 

  103. Yang P, Yang Q, Qian XH, Tong LP, Li XL: Iso-quino[4,5-bc]acridines: Design, synthesis and evaluation of DNA binding, anti-tumor and DNA photo-damaging ability. J Photochem Photobiol B, 2006, 84, 221–226.

    Article  CAS  PubMed  Google Scholar 

  104. Zeghida W, Demeunynck M: Application of 2,2,2-trichloroethoxycarbonyl protection to aminoacridines. Synthesis (Stuttg), 2007, 17, 231–234.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Cholewiński.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cholewiński, G., Dzierzbicka, K. & Kołodziejczyk, A.M. Natural and synthetic acridines/acridones as antitumor agents: their biological activities and methods of synthesis. Pharmacol. Rep 63, 305–336 (2011). https://doi.org/10.1016/S1734-1140(11)70499-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1734-1140(11)70499-6

Key words

Navigation