Skip to main content
Log in

Automated infrared ashing with palladium nitrate as an ashing aid for the determination of selenium in plant foods by inductively coupled plasma mass spectrometry

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Based on the automatic light wave ashing instrument, palladium nitrate was used as an ashing aid for the first time to collect selenium in the process of food ashing pre-treatment, and a method for the determination of selenium in food by ashing method was established with inductively coupled plasma mass spectrometry. At the same time, the effects of magnesium nitrate, rhodium nitrate, and nickel nitrate as ashing aids on selenium collection were investigated using certified plant standard materials. The capture of selenium by magnesium nitrate, rhodium nitrate, and nickel nitrate as ashing aids did not exceed 50%. Using palladium nitrate as an ashing aid, six food standard materials were measured, with selenium recovery rates ranging from 97 to 106%. A complete analysis cycle can be completed within an hour. The method detection limit of selenium was 0.021 μg g−1, and the relative standard deviation of five measurements was less than 7%. The experimental results show that palladium nitrate is an excellent ashing aid for capturing selenium, and it is far superior to the other three aids. In addition, the mechanism of palladium nitrate as an ashing aid for capturing selenium was discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

All relevant data are within the paper.

References

  1. Sunde RA. Selenium. In: Ross AC, Caballero B, Cousins RJ, Tucker KL, Ziegler TR, eds. Modern Nutrition in Health and Disease. 11th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2012:225–37. n.d.

  2. M. Roman. “Selenium: Properties and Determination”. Encyclopedia of Food and Health. Elsevier, 2016. Pp. 734–743. https://doi.org/10.1016/B978-0-12-384947-2.00615-2.

  3. D. Mendil, Z. Demirci, O.D. Uluozlu, M. Tuzen, M. Soylak, A new separation and preconcentration method for selenium in some foods using modified silica gel with 2,6-diamino-4-phenil-1,3,5-triazine. Food Chem. Elsevier Ltd 221, 1394–1399 (2017). https://doi.org/10.1016/j.foodchem.2016.11.014

    Article  CAS  Google Scholar 

  4. Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes: Vitamin C, Vitamin E, Selenium, and Carotenoids. National Academy Press, Washington, DC, 2000. n.d.

  5. A.-I. Stoica, G.-R. Babaua, E.-E. Iorgulescu, D. Marinescu, G.-E. Baiulescu, Differential pulse cathodic stripping voltammetric determination of selenium in pharmaceutical products. J. Pharm. Biomed. Anal. 30(4), 1425–1429 (2002). https://doi.org/10.1016/S0731-7085(02)00454-5

    Article  CAS  PubMed  Google Scholar 

  6. P.D. Whanger, Selenocompounds in Plants and Animals and their Biological Significance. J. Am. Coll. Nutr. 21(3), 223–232 (2002). https://doi.org/10.1080/07315724.2002.10719214

    Article  CAS  PubMed  Google Scholar 

  7. A. Khanam, K. Platel, Bioaccessibility of selenium, selenomethionine and selenocysteine from foods and influence of heat processing on the same. Food Chem. Elsevier Ltd 194, 1293–1299 (2016). https://doi.org/10.1016/j.foodchem.2015.09.005

    Article  CAS  Google Scholar 

  8. S.O. Souza, D.V.L. Ávila, V. Cerdà, R.G.O. Araujo, Selenium inorganic speciation in beers using MSFIA-HG-AFS system after multivariate optimization. Food Chem. 367, 130673 (2022). https://doi.org/10.1016/j.foodchem.2021.130673

    Article  CAS  PubMed  Google Scholar 

  9. J. Hou, L. Zhu, C. Chen, H. Feng, D. Li, S. Sun et al., Association of selenium levels with the prevention and control of Keshan disease: A cross-sectional study. J. Trace Elem. Med. Biol. 68, 126832 (2021). https://doi.org/10.1016/j.jtemb.2021.126832

    Article  CAS  PubMed  Google Scholar 

  10. B. Gómez-Nieto, M.J. Gismera, M.T. Sevilla, J.R. Procopio, Direct solid sampling of biological species for the rapid determination of selenium by high-resolution continuum source graphite furnace atomic absorption spectrometry. Anal. Chim. Acta 1202, 339637 (2022). https://doi.org/10.1016/j.aca.2022.339637

    Article  CAS  PubMed  Google Scholar 

  11. M. Atasoy, İ Kula, Speciation and determination of inorganic selenium species in certain fish and food samples by gold-coated W-coil atom trap hydride generation atomic absorption spectrometry. Food Chem. 369, 130938 (2022). https://doi.org/10.1016/j.foodchem.2021.130938

    Article  CAS  PubMed  Google Scholar 

  12. M. Messaoudi, S. Begaa, L. Hamidatou, M. Salhi, Determination of selenium in roasted beans coffee samples consumed in Algeria by radiochemical neutron activation analysis method. Radiochim. Acta 106(2), 141–146 (2018). https://doi.org/10.1515/ract-2017-2782

    Article  CAS  Google Scholar 

  13. B. Beladel, B. Nedjimi, A. Mansouri, D. Tahtat, M. Belamri, A. Tchanchane et al., Selenium content in wheat and estimation of the selenium daily intake in different regions of Algeria. Appl. Radiat. Isot. 71(1), 7–10 (2013). https://doi.org/10.1016/j.apradiso.2012.09.009

    Article  CAS  PubMed  Google Scholar 

  14. N.M. Chiera, E.A. Maugeri, I. Danilov, J. Balibrea-Correa, C. Domingo-Pardo, U. Köster et al., Preparation of PbSe targets for 79 Se neutron capture cross section studies. Nucl Instrum Methods Phys Res A. 1029, 166443 (2022). https://doi.org/10.1016/j.nima.2022.166443

    Article  CAS  Google Scholar 

  15. A. Krejčová, I. Ludvíková, T. Černohorský, M. Pouzar, Elemental analysis of nutritional preparations by inductively coupled plasma mass and optical emission spectrometry. Food Chem. 132(1), 588–596 (2012). https://doi.org/10.1016/j.foodchem.2011.10.076

    Article  CAS  PubMed  Google Scholar 

  16. Y. Shahbazi, F. Ahmadi, F. Fakhari, Voltammetric determination of Pb, Cd, Zn, Cu and Se in milk and dairy products collected from Iran: An emphasis on permissible limits and risk assessment of exposure to heavy metals. Food Chem. 192, 1060–1067 (2016). https://doi.org/10.1016/j.foodchem.2015.07.123

    Article  CAS  PubMed  Google Scholar 

  17. N. Güler, M. Maden, S. Bakırdere, O. Yavuz Ataman, M. Volkan. “Speciation of selenium in vitamin tablets using spectrofluorometry following cloud point extraction”. Food Chem. 2011. 129(4): 1793–1799. https://doi.org/10.1016/j.foodchem.2011.05.007.

  18. Y. Yuan, Y. Shao, F. Yang, H. Yu, Y. Zhang, M. Wen, Determination of Se and Te by hydride generation-inductively coupled plasma mass spectrometry after mixed-acid digestion of tungsten ores. Spectrochim. Acta Part B At. Spectrosc. 203, 106664 (2023). https://doi.org/10.1016/j.sab.2023.106664

    Article  CAS  Google Scholar 

  19. H. Zhu, K. Bierla, X. Jin, J. Szpunar, D. Chen, R. Lobinski, Identification of γ-Glutamyl-Selenomethionine as the Principal Selenium Metabolite in a Selenium-Enriched Probiotic, Bifidobacterium longum, by Two-Dimensional HPLC-ICP MS and HPLC-ESI Orbitrap MS. J. Agric. Food Chem. 70(22), 6726–6736 (2022). https://doi.org/10.1021/acs.jafc.2c01409

    Article  CAS  PubMed  Google Scholar 

  20. Y. Chen, Y. Deng, X. Wu, D. Zhang, F. Wang, K. Liu et al., The levels of selenium in tea from China and associated human exposure. J. Food Compos. Anal. 110, 104567 (2022). https://doi.org/10.1016/j.jfca.2022.104567

    Article  CAS  Google Scholar 

  21. N.H. Bings, J.O. Orlandini von Niessen, J.N. Schaper. “Liquid sample introduction in inductively coupled plasma atomic emission and mass spectrometry — Critical review”. Spectrochim Acta Part B At Spectrosc. Elsevier B.V., 2014. 100: 14–37. https://doi.org/10.1016/j.sab.2014.08.011.

  22. Y. Tsai, C. Lin, I. Hsu, Y. Sun, Sequential photocatalyst-assisted digestion and vapor generation device coupled with anion exchange chromatography and inductively coupled plasma mass spectrometry for speciation analysis of selenium species in biological samples. Anal. Chim. Acta 806, 165–171 (2014). https://doi.org/10.1016/j.aca.2013.11.008

    Article  CAS  PubMed  Google Scholar 

  23. R. Manjusha, K. Dash, D. Karunasagar, UV-photolysis assisted digestion of food samples for the determination of selenium by electrothermal atomic absorption spectrometry (ETAAS). Food Chem. 105(1), 260–265 (2007). https://doi.org/10.1016/j.foodchem.2006.11.011

    Article  CAS  Google Scholar 

  24. M.C. Zuma, P.N. Nomngongo, N. Mketo, Simultaneous Determination of REEs in Coal Samples Using the Combination of Microwave-Assisted Ashing and Ultrasound-Assisted Extraction Methods Followed by ICP-OES Analysis. Minerals. 11(10), 1103 (2021). https://doi.org/10.3390/min11101103

    Article  CAS  Google Scholar 

  25. G.K.H. Tam, G. Lacroix, Dry Ashing, Hydride Generation Atomic Absorption Spectrometric Determination of Arsenic and Selenium in Foods. J. AOAC Int. 65(3), 647–650 (1982). https://doi.org/10.1093/jaoac/65.3.647

    Article  CAS  Google Scholar 

  26. E. Schoenberger, J. Kassovicz, A. Shenhar, Micro Dry Ashing for Trace Selenium Determination in Organic Matrices. Int. J. Environ. Anal. Chem. 18(4), 227–235 (1984). https://doi.org/10.1080/03067318408077005

    Article  CAS  Google Scholar 

  27. S. Saracoglu, K. Saygi, O. Uluozlu, M. Tuzen, M. Soylak, Determination of trace element contents of baby foods from Turkey. Food Chem. 105(1), 280–285 (2007). https://doi.org/10.1016/j.foodchem.2006.11.022

    Article  CAS  Google Scholar 

  28. W.R. Mindak, S.P. Dolan, Determination of Arsenic and Selenium in Food using a Microwave Digestion?Dry Ash Preparation and Flow Injection Hydride Generation Atomic Absorption Spectrometry. J. Food Compos. Anal. 12(2), 111–122 (1999). https://doi.org/10.1006/jfca.1999.0814

    Article  CAS  Google Scholar 

  29. Z. Hu, L. Qi. “Sample Digestion Methods”. Treatise on Geochemistry. Elsevier, 2014. Pp. 87–109. https://doi.org/10.1016/B978-0-08-095975-7.01406-6.

  30. E. Vassileva, H. Dočekalová, H. Baeten, S. Vanhentenrijk, M. Hoenig, Revisitation of mineralization modes for arsenic and selenium determinations in environmental samples. Talanta. R. Soc. Chem. 54(1), 187–196 (2001). https://doi.org/10.1016/S0039-9140(00)00652-4

    Article  CAS  Google Scholar 

  31. H.R. El-Ramady, É. Domokos-Szabolcsy, T.A. Shalaby, J. Prokisch, M. Fári. “Selenium in Agriculture: Water, Air, Soil, Plants, Food, Animals and Nanoselenium”. 2015. Pp. 153–232. https://doi.org/10.1007/978-3-319-11906-9_5.

  32. E.A.H. Pilon-Smits. “Selenium in Plants”. 2015. Pp. 93–107. https://doi.org/10.1007/978-3-319-08807-5_4.

  33. X.L. Xin Li. “Studies on Thermolytic Dissociation Mechanism of Cysteine by AM1”. Journal of Hubei Three Gorges University. 1999. 5: 52–54. https://doi.org/10.3321/j.issn:0250-3301.2001.03.022.

  34. D.L. Styris, L.J. Prell, D.A. Redfield, J.A. Holcombe, D.A. Bass, Vahid. Majidi. “Mechanisms of selenium vaporization with palladium modifiers using electrothermal atomization and mass spectrometric detection”. Anal Chem. 1991. 63(5): 508–517. https://doi.org/10.1021/ac00005a024.

  35. R.E. Sturgeon, S.N. Willie, G.I. Sproule, P.T. Robinson, S.S. Berman, Sequestration of volatile element hydrides by platinum group elements for graphite furnace atomic absorption. Spectrochim. Acta Part B At. Spectrosc. 44(7), 667–682 (1989). https://doi.org/10.1016/0584-8547(89)80065-5

    Article  Google Scholar 

  36. B. Dočekal, P. Marek, Investigation of in situ trapping of selenium and arsenic hydrides within a tungsten tube atomiser. J. Anal. At. Spectrom. 16(8), 831–837 (2001). https://doi.org/10.1039/B101841H

    Article  Google Scholar 

  37. N. Zhang, K. Shen, X. Yang, Z. Li, T. Zhou, Y. Zhang et al., Simultaneous determination of arsenic, cadmium and lead in plant foods by ICP-MS combined with automated focused infrared ashing and cold trap. Food Chem. Elsevier 2018(264), 462–470 (2017). https://doi.org/10.1016/j.foodchem.2018.05.058

    Article  CAS  Google Scholar 

  38. J. González-Nieto, J.F. López-Sánchez, R. Rubio, Comparison of chemical modifiers for selenium determination in soil aqua regia extracts by ZETAAS. Talanta 69(5), 1118–1122 (2006). https://doi.org/10.1016/j.talanta.2005.12.012

    Article  CAS  PubMed  Google Scholar 

  39. E. Kopyść, E. Bulska, R. Wennrich, On the use of noble metals modifiers for simultaneous determination of As, Sb and Se by electrothermal atomic absorption spectrometry. Spectrochim. Acta Part B At. Spectrosc. 58(8), 1515–1523 (2003). https://doi.org/10.1016/S0584-8547(03)00054-5

    Article  CAS  Google Scholar 

  40. B. Welz, G. Schlemmer, J.R. Mudakavi, Palladium nitrate-magnesium nitrate modifier for electrothermal atomic absorption spectrometry. Part 5. Performance for the determination of 21 elements. J. Anal. At. Spectrom. 7(8), 1257–1271 (1992). https://doi.org/10.1039/JA9920701257

    Article  CAS  Google Scholar 

  41. V.K. Sharma, T.J. McDonald, M. Sohn, G.A.K. Anquandah, M. Pettine, R. Zboril, Biogeochemistry of selenium. A review. Environ. Chem. Lett. 13(1), 49–58 (2015). https://doi.org/10.1007/s10311-014-0487-x

    Article  CAS  Google Scholar 

  42. D.L. Styris, L.J. Prell, D.A. Redfield, J.A. Holcombe, D.A. Bass, Vahid. Majidi. “Mechanisms of selenium vaporization with palladium modifiers using electrothermal atomization and mass spectrometric detection”. Anal Chem. 1991. 63(5): 508–517. https://doi.org/10.1021/ac00005a024

Download references

Acknowledgements

This work was supported by the National Instrumentation Program of China (Grant No 2013YQ510391); the Shaanxi Province Science and Technology Project (Grant No 2015GY054, No 2021GY169 and 2024GX-YBXM-437).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ni Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Zhou, T., Ye, M. et al. Automated infrared ashing with palladium nitrate as an ashing aid for the determination of selenium in plant foods by inductively coupled plasma mass spectrometry. ANAL. SCI. (2024). https://doi.org/10.1007/s44211-024-00570-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44211-024-00570-2

Keywords

Navigation