Skip to main content
Log in

Determination of low concentrations of glucose through colorimetric analysis using CoFe2O4 magnetic catalyst and SAT-3

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Natural enzyme mimics have attracted attention as alternatives to natural peroxidases. Among these, magnetic nanoparticles, especially ferrites, have attracted attention because of their unique electronic and physical structures, which are expected to be applied in various fields, including high-frequency magnetic materials, biomaterials, gas sensors, and semiconductor photocatalysts. The structural properties of the synthesized catalysts were investigated using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The prepared CoFe2O4 exhibited a spinel ferrite structure and formed a wood-flake-like bulk structure. In this study, magnetic CoFe2O4 was prepared using a precipitation method as a natural enzyme mimetic. CoFe2O4 showed excellent peroxidase-like activity, as demonstrated by the Michaelis–Menten constant (Km) and the maximum velocity (Vmax). The linear ranges of the calibration curves for H2O2 and glucose were in the range of 0–500 µM, and the detection limits were 1.83 and 5.91 µM, respectively. This analytical method was applied for the determination of glucose in human serum, and the results were satisfactory and consistent with certified values. The performance of this sensor was comparable to or superior to those of several other sensors commonly used for glucose analysis, indicating that its practical application is feasible.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1.
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding authors on reasonable request.

References

  1. S. Rezaei, A.L. Isfahani, M. Moghadam, S. Tangestaninejad, V. Mirkhani, I.M. Baltork, Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2018.09.046

    Article  Google Scholar 

  2. S. Li, Y. Chu, N. Ren, S.H. Ho, Chem. Eng. J. (2023). https://doi.org/10.1016/j.cej.2023.146557

    Article  PubMed  PubMed Central  Google Scholar 

  3. E. Issaka, M.A. Wariboko, A. Mohammed, M. Enyan, S. Aguree, Chem. Eng. J. Adv. (2023). https://doi.org/10.1016/j.ceja.2023.100510

    Article  Google Scholar 

  4. H. Guan, Y. Zhang, S. Liu, J. Appl. Electrochem. (2022). https://doi.org/10.1007/s10800-022-01684-z

    Article  Google Scholar 

  5. B. Palanivel, M. Lallimathi, B. Arjunkumar, M. Shkir, T. Alshahrani, K.A. Namshah, M.S. Hamdy, S. Shanavas, M. Venkatachalam, G. Ramalingam, J. Environ. Chem. Eng. (2021). https://doi.org/10.1016/j.jece.2020.104698

    Article  Google Scholar 

  6. S. Li, Z. Chen, F. Yang, W. Yue, Chin. Chem. Lett. (2023). https://doi.org/10.1016/j.cclet.2023.108793

    Article  PubMed  PubMed Central  Google Scholar 

  7. W. Ma, J. Liu, Y. Xin, X. Yang, R. Li, X. Ding, Y. Niu, Y. Xu, Microchem. J. (2020). https://doi.org/10.1016/j.microc.2019.104352

    Article  Google Scholar 

  8. Y. Liang, Y. Han, J. Dan, R. Li, H. Sun, J. Wang, W. Zhang, Food Res. Int. (2023). https://doi.org/10.1016/j.foodres.2022.112211

    Article  PubMed  Google Scholar 

  9. H. Tavakoli, S. Mohammadi, X. Li, G. Fu, X. Li, TrAC. Trends Anal. Chem. (2022). https://doi.org/10.1016/j.trac.2022.116806

    Article  Google Scholar 

  10. Z. Zeng, X. Wang, T. Yang, Y. Li, X. Liu, P. Zhang, B. Feng, T. Qing, Anal. Chim. Acta (2023). https://doi.org/10.1016/j.aca.2023.340861

    Article  PubMed  PubMed Central  Google Scholar 

  11. H.H. Do, S.Y. Kim, Q.V. Le, Microchem. J. (2023). https://doi.org/10.1016/j.microc.2023.109202

    Article  Google Scholar 

  12. Z. Li, M. Zhang, L. Liu, J. Zheng, H. Alsulami, M.A. Kutbi, J. Xu, Colloids Surf. A Physicochem. Eng. (2020). https://doi.org/10.1016/j.colsurfa.2020.125347

    Article  Google Scholar 

  13. L. Niu, Y. Cai, T. Dong, Y. Zhang, X. Liu, X. Zhang, L. Zeng, A. Liu, Biosens. Bioelectron. (2022). https://doi.org/10.1016/j.bios.2022.114285

    Article  PubMed  PubMed Central  Google Scholar 

  14. V. Sanko, A. Şenocak, S.O. Tümay, E. Demirbas, Bioelectrochem. (2023). https://doi.org/10.1016/j.bioelechem.2022.108324

    Article  Google Scholar 

  15. M. Radmansouri, E. Bahmani, E. Sarikhani, K. Rahmani, F. Sharifianjazi, M. Irani, J. Biol. Macromol. (2018). https://doi.org/10.1016/j.ijbiomac.2018.04.161

    Article  Google Scholar 

  16. M.M. Naik, H.S. BhojyaNaik, N. Kottam, M. Vinuth, G. Nagaraju, M.C. Prabhakara, J Solgel Sci Technol. (2019). https://doi.org/10.1007/s10971-019-05048-6

    Article  Google Scholar 

  17. F. Sharifianjazi, M. Moradi, N. Parvin, A. Nemati, A.J. Rad, N. Sheysi, A. Abouchenari, A. Mohammadi, S. Karbasi, Z. Ahmadi, A. Esmaeilkhanian, M. Irani, A. Pakseresht, S. Sahmani, M.S. Asl, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.04.202

    Article  Google Scholar 

  18. H.Y. Hafeez, S.K. Lakhera, N. Narayanan, S. Harish, Y. Hayakawa, B.K. Lee, B. Neppolian, ACS Omega (2019). https://doi.org/10.1021/acsomega.8b03221

    Article  PubMed  PubMed Central  Google Scholar 

  19. N. Tian, S. Giannakis, L. Akbarzadeh, F. Hasanvandian, E. Dehghanifard, B. Kakavandi, J. Environ. Manage. (2023). https://doi.org/10.1016/j.jenvman.2022.117022

    Article  PubMed  Google Scholar 

  20. S. Kumar, S. Munjal, N. Khare, J. Phys. Chem. Solids (2017). https://doi.org/10.1016/j.jpcs.2017.02.003

    Article  Google Scholar 

  21. J.A.F. Garibay, M.A.M. Rojas, Colloids Surf. A (2021). https://doi.org/10.1016/j.colsurfa.2021.126236

    Article  Google Scholar 

  22. A. Bigham, A.H. Aghajanian, A. Saudi, M. Rafienia, Mater. Sci. Eng. C (2020). https://doi.org/10.1016/j.msec.2019.110579

    Article  Google Scholar 

  23. D. Jamon, E. Marin, S. Neveu, M.-F. Blanc-Mignon, F. Royer, Photonics Nanostruct. Fundam. Appl. (2017). https://doi.org/10.1016/j.photonics.2017.10.001

    Article  Google Scholar 

  24. V.M. Chakachaka, O.T. Mahlangu, C.S. Tshangana, B.B. Mamba, A.A. Muleja, J. Membr. Sci. (2023). https://doi.org/10.1016/j.memsci.2023.121612

    Article  Google Scholar 

  25. D. Liu, D. Chen, Z. Hao, Y. Tang, L. Jiang, T. Li, B. Tian, C. Yan, Y. Luo, B. Jia, Chemosphere (2022). https://doi.org/10.1016/j.chemosphere.2022.135935

    Article  PubMed  PubMed Central  Google Scholar 

  26. Y. Ding, C. Ren, X. Tian, M. Zhang, J. Zhang, K. Sun, Y. Wu, H. Sun, L. Pang, F. Sha, Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.03.251

    Article  Google Scholar 

  27. Q. Liu, Y. Liu, F. Wu, X. Cao, Z. Li, M. Alharbi, A.N. Abbas, M. Amer, C. Zhou, ACS Nano (2018). https://doi.org/10.1021/acsnano.7b06823

    Article  PubMed  PubMed Central  Google Scholar 

  28. T. Lee, I. Kim, D.Y. Cheong, S. Roh, H.G. Jung, S.W. Lee, H.S. Kim, D.S. Yoon, Y. Hong, G. Lee, Anal. Chim. Acta (2021). https://doi.org/10.1016/j.aca.2021.338387

    Article  PubMed  PubMed Central  Google Scholar 

  29. Y. Yao, J. Chen, Y. Guo, T. Lv, Z. Chen, N. Li, S. Cao, B. Chen, T. Chen, Biosens. Bioelectron. (2021). https://doi.org/10.1016/j.bios.2021.113078

    Article  PubMed  PubMed Central  Google Scholar 

  30. S. Kim, H.J. Jeon, S. Park, D.Y. Lee, E. Chung, Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-65103-z

    Article  PubMed  PubMed Central  Google Scholar 

  31. J. Liu, Q. Lang, B. Liang, Z. Zheng, Y. Zhang, A. Liu, Anal. Chim. Acta (2022). https://doi.org/10.1016/j.aca.2022.340173

    Article  PubMed  PubMed Central  Google Scholar 

  32. V.K. Tran, P.K. Gupta, Y. Park, S.E. Son, W. Hur, H.B. Lee, J.Y. Park, S.N. Kim, G.H. Seong, J. Taiwan Inst. Chem. Eng. (2021). https://doi.org/10.1016/j.jtice.2021.03.029

    Article  Google Scholar 

  33. T. Zhang, S. Zhu, J. Wang, Z. Liu, M. Wang, S. Li, Q. Huang, Spectrochim. Acta A Mol. Biomol. Spectrosc. (2023). https://doi.org/10.1016/j.saa.2022.122307

    Article  PubMed  PubMed Central  Google Scholar 

  34. S. Ke, L. Qin, R. Zhang, W. Zhu, W. Lu, L. Ma, S. Wu, X. Li, Surf. Interfaces (2023). https://doi.org/10.1016/j.surfin.2023.103102

    Article  Google Scholar 

  35. T. George, A.T. Sunny, T. Varghese, IOP Conf. Ser. Mater. Sci. Eng. (2015). https://doi.org/10.1088/1757-899X/73/1/012050

    Article  Google Scholar 

  36. Z. Peng, Y. Xiong, Z. Liao, M. Zeng, J. Zhong, X. Tang, P. Qiu, Sens. Actuator. B Chem. (2023). https://doi.org/10.1016/j.snb.2023.133540

    Article  Google Scholar 

  37. M. Mizoguchi, M. Ishiyama, M. Shiga, K. Sasamoto, Anal. Commun. (1998). https://doi.org/10.1039/A802128G

    Article  Google Scholar 

  38. M. Wang, Z. Ai, L. Zhang, J. Am. Chem. Soc. (2008). https://doi.org/10.1021/jp804009h

    Article  PubMed  PubMed Central  Google Scholar 

  39. X. Li, C. Kutal, J. Alloys Compound. (2003). https://doi.org/10.1016/S0925-8388(02)00863-0

    Article  Google Scholar 

  40. Z. Zhou, Y. Zhang, Z. Wang, W. Wei, W. Tang, J. Shi, R. Xiong, Appl. Surf. Sci. (2008). https://doi.org/10.1016/j.apsusc.2008.05.067

    Article  Google Scholar 

  41. G. He, Y. Wen, C. Ma, X. Li, L. Wang, L. Gao, Z. Sun, JOM (2021). https://doi.org/10.1007/s11837-021-04762-3

    Article  PubMed  PubMed Central  Google Scholar 

  42. L. Kumar, P. Kumar, A. Narayan, M. Kar, Int. Nano Lett. (2013). https://doi.org/10.1186/2228-5326-3-8

    Article  Google Scholar 

  43. F. Xia, Q. Shi, Z. Nan, Surf. Interfaces. (2021). https://doi.org/10.1016/j.surfin.2021.101109

    Article  Google Scholar 

  44. I. Malinowska, Z. Ryżyńska, E. Mrotek, T. Klimczuk, A.Z. Jurek, J. Nanomater. (2020). https://doi.org/10.1155/2020/9046219

    Article  Google Scholar 

  45. L. Frolova, A. Derimova, T. Butyrina, Acta Phys. Pol. A (2018). https://doi.org/10.12693/APhysPolA.133.1021

    Article  Google Scholar 

  46. M. Aihara, N. Kubota, T. Minami, R. Shirakawa, Y. Sakurai, T. Hayashi, M. Iwamoto, I. Takamoto, T. Kubota, R. Suzuki, S. Usami, H. Jinnouchi, M. Aihara, T. Yamauchi, T. Sakata, T. Kadowaki, J Diabetes Investig. (2020). https://doi.org/10.1111/jdi.13344

    Article  PubMed  PubMed Central  Google Scholar 

  47. Y. Shi, P. Su, Y. Wang, Y. Yang, Talanta (2014). https://doi.org/10.1016/j.talanta.2014.06.053

    Article  PubMed  Google Scholar 

  48. F. Huang, J. Wang, W. Chen, Y. Wan, X. Wang, N. Cai, J. Liu, F. Yu, J. Taiwan Inst. Chem. Eng. (2018). https://doi.org/10.1016/j.jtice.2017.12.011

    Article  Google Scholar 

  49. L. Tian, B. Zhao, J. Zhang, X. Luo, F. Wu, Colloids Surf. A Physicochem. Eng. (2023). https://doi.org/10.1016/j.colsurfa.2023.131309

    Article  Google Scholar 

  50. Y. Dong, H. Zhang, Z.U. Rahman, L. Su, X.J. Chen, X.G. Chen, Nanoscale (2012). https://doi.org/10.1039/C2NR12109C

    Article  PubMed  Google Scholar 

  51. Y. Zhang, J. Tian, S. Liu, L. Wang, X. Qin, W. Lu, G. Chang, Y. Luo, A.M. Asiri, A.O. Al-Youbi, X. Sun, Analyst (2012). https://doi.org/10.1039/C2AN00035K

    Article  PubMed  PubMed Central  Google Scholar 

  52. W. Luo, Y.S. Li, J. Yuan, L. Zhu, Z. Liu, H. Tang, Talanta (2010). https://doi.org/10.1016/j.talanta.2010.01.035

    Article  PubMed  Google Scholar 

  53. N. Tank, Suman, C.S. Pundeir, Ind. J. Biochem. Biophys. (2005). https://nopr.niscpr.res.in/handle/123456789/3453

Download references

Acknowledgements

This study was partly supported by a grant-in-aid fund for scientific research (B) [Grant nos. 21H03642 (S.K.), and 22H02119 (H.K.)] and a grant-in-aid for early-career scientists [Grant no. 22K14714 (I.T.)] from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Funding

Japan Society for the Promotion of Science, 22H02119, Hideyuki KATSUMATA, 21H03642, Satoshi Kaneco, 22K14714, Ikki Tateishi.

Author information

Authors and Affiliations

Authors

Contributions

K. M.: Writing – original draft, writing – review and editing, formal analysis, investigation; H. K.: writing – original draft, writing – review and editing, formal analysis, conceptualization, funding acquisition; M. F.: Formal analysis, visualization, methodology; I. T.: Formal analysis, investigation, methodology; S. K.: Formal analysis, supervision.

Corresponding authors

Correspondence to Kurumi Matsui or Hideyuki Katsumata.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsui, K., Katsumata, H., Furukawa, M. et al. Determination of low concentrations of glucose through colorimetric analysis using CoFe2O4 magnetic catalyst and SAT-3. ANAL. SCI. (2024). https://doi.org/10.1007/s44211-024-00554-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44211-024-00554-2

Keywords

Navigation