Skip to main content
Log in

Recent progress in tannin and lignin blended metal oxides and metal sulfides as smart materials for electrochemical sensor applications

  • Review
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Our technologically advanced civilization has made sensors an essential component. They have potential uses in the pharmaceutical sector, clinical analysis, food quality control, environmental monitoring, and other areas. One of the most active fields of analytical chemistry research is the fabrication of electrochemical sensors. An intriguing area of electroanalytical chemistry is the modification of electrodes using polymeric films. Due to their benefits, which include high adhesion to the electrode surface, chemical stability of the coating, superior selectivity, sensitivity, and homogeneity in electrochemical deposition, polymer-modified electrodes have attracted a great deal of interest in the electroanalytical sector. Conducting polymers are an important material for sensing devices because of their fascinating features, which include high mechanical flexibility, electrical conductivity, and the capacity to be electrochemically converted between electronically insulating and conducting states. Tannin or lignin nanomaterials can be an inter-linker leading to flexible and functional polymeric networks. There is a continuing demand for fast and simple analytical methods for the determination of many clinically important biomarkers, food additives, environmental pollutants etc. This review in a comprehensive way summarizes and discusses the various metal oxide and sulfide-incorporated tannin and lignin scaffolds using electrochemical sensing and biosensing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(Reproduced from reference [95] with permission from Wiley online library)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be available on request.

References

  1. R.W. Murray, Chemical modification of electrodes (1983)

  2. J.M. Zen, A.S. Kumar, D.M. Tsai, Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis 15, 1073–1087 (2003). https://doi.org/10.1002/elan.200390130

    Article  CAS  Google Scholar 

  3. M.A. Schneeweiss, H. Hagenström, M.J. Esplandiu, D.M. Kolb, Electrolytic metal deposition onto chemically modified electrodes. Appl. Phys. A 69, 537–551 (1999). https://doi.org/10.1007/s003399900154

    Article  CAS  Google Scholar 

  4. P.R. Moses, L. Wier, R.W. Murray, Chemically modified tin oxide electrode. Anal. Chem. 47, 1882–1886 (1975). https://doi.org/10.1021/ac60362a043

    Article  CAS  Google Scholar 

  5. D.C. Tiwari, R. Jain, S. Sharma, Electrochemically deposited polyaniline/polypyrrole polymer film modified electrodes for determination of furazolidone drug (2007). https://www.researchgate.net/publication/239573370

  6. A. Moreno, M.H. Sipponen, Lignin-based smart materials: a roadmap to processing and synthesis for current and future applications. Mater. Horiz. 7, 2237–2257 (2020). https://doi.org/10.1039/D0MH00798F

    Article  CAS  Google Scholar 

  7. J.K. Hammitt, R.J. Lempert, M.E. Schlesinger, A sequential-decision strategy for abating climate change. Nature 357, 315–318 (1992). https://doi.org/10.1038/357315a0

    Article  Google Scholar 

  8. D. Dasgupta, D. Ghosh, S. Bandhu, D.K. Adhikari, Lignocellulosic sugar management for xylitol and ethanol fermentation with multiple cell recycling by Kluyveromyces marxianus IIPE453. Microbiol. Res. 200, 64–72 (2017). https://doi.org/10.1016/j.micres.2017.04.002

    Article  CAS  PubMed  Google Scholar 

  9. C.O. Tuck, E. Pérez, I.T. Horváth, R.A. Sheldon, M. Poliakoff, Valorization of biomass: deriving more value from waste. Science 337(2012), 695–699 (1979). https://doi.org/10.1126/science.1218930

    Article  CAS  Google Scholar 

  10. W. Bao, D.M. O’Malley, R. Whetten, R.R. Sederoff, A laccase associated with lignification in loblolly pine xylem. Science 260(1993), 672–674 (1979). https://doi.org/10.1126/science.260.5108.672

    Article  Google Scholar 

  11. Y. Wang, M. Chantreau, R. Sibout, S. Hawkins, Plant cell wall lignification and monolignol metabolism. Front. Plant Sci. (2013). https://doi.org/10.3389/fpls.2013.00220

    Article  PubMed  PubMed Central  Google Scholar 

  12. A.J. Ragauskas, G.T. Beckham, M.J. Biddy, R. Chandra, F. Chen, M.F. Davis, B.H. Davison, R.A. Dixon, P. Gilna, M. Keller, P. Langan, A.K. Naskar, J.N. Saddler, T.J. Tschaplinski, G.A. Tuskan, C.E. Wyman, Lignin valorization: improving lignin processing in the biorefinery. Science (1979) (2014). https://doi.org/10.1126/science.1246843

    Article  Google Scholar 

  13. D. Yiamsawas, G. Baier, E. Thines, K. Landfester, F.R. Wurm, Biodegradable lignin nanocontainers. RSC Adv. 4, 11661–11663 (2014). https://doi.org/10.1039/C3RA47971D

    Article  CAS  Google Scholar 

  14. S. Sen, S. Patil, D.S. Argyropoulos, Thermal properties of lignin in copolymers, blends, and composites: a review. Green Chem. 17, 4862–4887 (2015). https://doi.org/10.1039/C5GC01066G

    Article  CAS  Google Scholar 

  15. W. Yang, E. Fortunati, F. Dominici, G. Giovanale, A. Mazzaglia, G.M. Balestra, J.M. Kenny, D. Puglia, Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films. Int. J. Biol. Macromol. 89, 360–368 (2016). https://doi.org/10.1016/j.ijbiomac.2016.04.068

    Article  CAS  PubMed  Google Scholar 

  16. E. Larrañeta, R.E.M. Lutton, A.D. Woolfson, R.F. Donnelly, Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater. Sci. Eng. R. Rep. 104, 1–32 (2016). https://doi.org/10.1016/j.mser.2016.03.001

    Article  Google Scholar 

  17. M. Yousuf, A. Mollah, P. Palta, T.R. Hess, R.K. Vempati, D.L. Cocke, Chemical and physical effects of sodium lignosulfonate superplasticizer on the hydration of portland cement and solidification/stabilization consequences. Cem. Concr. Res. 25, 671–682 (1995). https://doi.org/10.1016/0008-8846(95)00055-H

    Article  CAS  Google Scholar 

  18. A. Hasan, P. Fatehi, Cationic kraft lignin-acrylamide as a flocculant for clay suspensions: 1. Molecular weight effect. Sep. Purif. Technol. 207, 213–221 (2018). https://doi.org/10.1016/j.seppur.2018.06.047

    Article  CAS  Google Scholar 

  19. S. Tan, D. Liu, Y. Qian, J. Wang, J. Huang, C. Yi, X. Qiu, Y. Qin, Towards better UV-blocking and antioxidant performance of varnish via additives based on lignin and its colloids. Holzforschung 73, 485–491 (2019). https://doi.org/10.1515/hf-2018-0134

    Article  CAS  Google Scholar 

  20. D. Kai, M.J. Tan, P.L. Chee, Y.K. Chua, Y.L. Yap, X.J. Loh, Towards lignin-based functional materials in a sustainable world. Green Chem. 18, 1175–1200 (2016). https://doi.org/10.1039/C5GC02616D

    Article  CAS  Google Scholar 

  21. L. Zhai, Stimuli-responsive polymer films. Chem. Soc. Rev. 42, 7148 (2013). https://doi.org/10.1039/c3cs60023h

    Article  CAS  PubMed  Google Scholar 

  22. A. Lendlein, O.E.C. Gould, Reprogrammable recovery and actuation behaviour of shape-memory polymers. Nat. Rev. Mater. 4, 116–133 (2019). https://doi.org/10.1038/s41578-018-0078-8

    Article  Google Scholar 

  23. A. Arbenz, L. Avérous, Synthesis and characterization of fully biobased aromatic polyols – oxybutylation of condensed tannins towards new macromolecular architectures. RSC Adv. 4, 61564–61572 (2014). https://doi.org/10.1039/C4RA10691A

    Article  CAS  Google Scholar 

  24. A. Arbenz, L. Avérous, Chemical modification of tannins to elaborate aromatic biobased macromolecular architectures. Green Chem. 17, 2626–2646 (2015). https://doi.org/10.1039/C5GC00282F

    Article  CAS  Google Scholar 

  25. H.A.M. Bacelo, S.C.R. Santos, C.M.S. Botelho, Tannin-based biosorbents for environmental applications: a review. Chem. Eng. J. 303, 575–587 (2016). https://doi.org/10.1016/j.cej.2016.06.044

    Article  CAS  Google Scholar 

  26. P. Schofield, D.M. Mbugua, A.N. Pell, Analysis of condensed tannins: a review. Anim. Feed Sci. Technol. 91, 21–40 (2001). https://doi.org/10.1016/S0377-8401(01)00228-0

    Article  CAS  Google Scholar 

  27. H. Pan, Y. Zhong, Z. Zhang, C. Pan, Characteristics, industrial application, and prospects of continuous extrusion technology. Res. Appl. Mater. Sci. (2019). https://doi.org/10.33142/msra.v1i1.667

    Article  Google Scholar 

  28. T. Ogata, S. Morisada, Y. Oinuma, Y. Seida, Y. Nakano, Preparation of adsorbent for phosphate recovery from aqueous solutions based on condensed tannin gel. J. Hazard. Mater. 192, 698–703 (2011). https://doi.org/10.1016/j.jhazmat.2011.05.073

    Article  CAS  PubMed  Google Scholar 

  29. A.-K. Koopmann, C. Schuster, J. Torres-Rodríguez, S. Kain, H. Pertl-Obermeyer, A. Petutschnigg, N. Hüsing, Tannin-based hybrid materials and their applications: a review. Molecules 25, 4910 (2020). https://doi.org/10.3390/molecules25214910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. S.C.R. Santos, H.A.M. Bacelo, R.A.R. Boaventura, C.M.S. Botelho, Tannin-adsorbents for water decontamination and for the recovery of critical metals: current state and future perspectives. Biotechnol. J. 14, 1900060 (2019). https://doi.org/10.1002/biot.201900060

    Article  CAS  Google Scholar 

  31. F.L. Braghiroli, V. Fierro, M.T. Izquierdo, J. Parmentier, A. Pizzi, A. Celzard, Nitrogen-doped carbon materials produced from hydrothermally treated tannin. Carbon N Y 50, 5411–5420 (2012). https://doi.org/10.1016/j.carbon.2012.07.027

    Article  CAS  Google Scholar 

  32. K. Hashida, R. Makino, S. Ohara, Amination of pyrogallol nucleus of condensed tannins and related polyphenols by ammonia water treatment. Hfsg 63, 319–326 (2009). https://doi.org/10.1515/HF.2009.043

    Article  CAS  Google Scholar 

  33. F. Braghiroli, V. Fierro, A. Pizzi, K. Rode, W. Radke, L. Delmotte, J. Parmentier, A. Celzard, Reaction of condensed tannins with ammonia. Ind. Crops Prod. 44, 330–335 (2013). https://doi.org/10.1016/j.indcrop.2012.11.024

    Article  CAS  Google Scholar 

  34. C. Luo, W. Grigsby, N. Edmonds, A. Easteal, J. Al-Hakkak, Synthesis, characterization, and thermal behaviors of tannin stearates prepared from quebracho and pine bark extracts. J. Appl. Polym. Sci. (2010). https://doi.org/10.1002/app.31545

    Article  Google Scholar 

  35. A. Nicollin, X. Zhou, A. Pizzi, W. Grigsby, K. Rode, L. Delmotte, MALDI-TOF and 13C NMR analysis of a renewable resource additive—thermoplastic acetylated tannins. Ind. Crops Prod. 49, 851–857 (2013). https://doi.org/10.1016/j.indcrop.2013.06.013

    Article  CAS  Google Scholar 

  36. R. Soto, Evidence of chemical reactions between di- and poly-glycidyl ether resins and tannins isolated from Pinus radiata D. Don bark. Bioresour. Technol. 96, 95–101 (2005). https://doi.org/10.1016/j.biortech.2003.05.006

    Article  CAS  PubMed  Google Scholar 

  37. M. Gao, Z. Wang, C. Yang, J. Ning, Z. Zhou, G. Li, Novel magnetic graphene oxide decorated with persimmon tannins for efficient adsorption of malachite green from aqueous solutions. Colloids Surf A Physicochem Eng Asp 566, 48–57 (2019). https://doi.org/10.1016/j.colsurfa.2019.01.016

    Article  CAS  Google Scholar 

  38. A.F.M. Santos, L.J.A. Macedo, M.H. Chaves, M. Espinoza-Castañeda, A. Merkoçi, F.C.A. Lima, W. Cantanhêde, Hybrid self-assembled materials constituted by ferromagnetic nanoparticles and tannic acid: a theoretical and experimental investigation. J. Braz. Chem. Soc. (2015). https://doi.org/10.5935/0103-5053.20150322

    Article  Google Scholar 

  39. K. Rurack, R. Martínez-Máñez, Hybrid nano materials meet supramolecular chemistry: a brief introduction to basic terms and concepts, in The Supramolecular Chemistry of Organic-Inorganic Hybrid Materials. (Wiley, Hoboken, 2010), pp.1–10. https://doi.org/10.1002/9780470552704.ch1

    Chapter  Google Scholar 

  40. S.I. Stupp, L.C. Palmer, Supramolecular chemistry and self-assembly in organic materials design. Chem. Mater. 26, 507–518 (2014). https://doi.org/10.1021/cm403028b

    Article  CAS  Google Scholar 

  41. C.-C. Huang, H.-Y. Liao, Y.-C. Shiang, Z.-H. Lin, Z. Yang, H.-T. Chang, Synthesis of wavelength-tunable luminescent gold and gold/silver nanodots. J. Mater. Chem. 19, 755–759 (2009). https://doi.org/10.1039/B808594C

    Article  CAS  Google Scholar 

  42. X. Huang, Y. Wang, X. Liao, B. Shi, Adsorptive recovery of Au3+ from aqueous solutions using bayberry tannin-immobilized mesoporous silica. J. Hazard. Mater. 183, 793–798 (2010). https://doi.org/10.1016/j.jhazmat.2010.07.096

    Article  CAS  PubMed  Google Scholar 

  43. L.S. Costa, G.P. Fidelis, S.L. Cordeiro, R.M. Oliveira, D.A. Sabry, R.B.G. Câmara, L.T.D.B. Nobre, M.S.S.P. Costa, J. Almeida-Lima, E.H.C. Farias, E.L. Leite, H.A.O. Rocha, Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed. Pharmacother. 64, 21–28 (2010). https://doi.org/10.1016/j.biopha.2009.03.005

    Article  CAS  PubMed  Google Scholar 

  44. E. Binaeian, N. Seghatoleslami, M.J. Chaichi, Synthesis of oak gall tannin-immobilized hexagonal mesoporous silicate (OGT-HMS) as a new super adsorbent for the removal of anionic dye from aqueous solution. Desalin. Water Treat. 57, 8420–8436 (2016). https://doi.org/10.1080/19443994.2015.1020513

    Article  CAS  Google Scholar 

  45. Q. Xu, Y. Wang, L. Jin, Y. Wang, M. Qin, Adsorption of Cu (II), Pb (II) and Cr (VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose. J. Hazard. Mater. 339, 91–99 (2017). https://doi.org/10.1016/j.jhazmat.2017.06.005

    Article  CAS  PubMed  Google Scholar 

  46. Y. Zhang, F. He, X. Li, Three-dimensional composite hydrogel based on polyamine zirconium oxide, alginate and tannic acid with high performance for Pb(II), Hg(II) and Cr(VI) trapping. J. Taiwan Inst. Chem. Eng. 65, 304–311 (2016). https://doi.org/10.1016/j.jtice.2016.05.023

    Article  CAS  Google Scholar 

  47. Y. Leng, L. Shi, S. Du, J. Jiang, P. Jiang, A tannin-derived zirconium-containing porous hybrid for efficient Meerwein–Ponndorf–Verley reduction under mild conditions. Green Chem. 22, 180–186 (2020). https://doi.org/10.1039/C9GC03393A

    Article  CAS  Google Scholar 

  48. N.P. de Moraes, M.L.C.P. da Silva, T.M.B. Campos, G.P. Thim, L.A. Rodrigues, Novel synthetic route for low-cost carbon-modified TiO2 with enhanced visible light photocatalytic activity: carbon content and calcination effects. J. Solgel Sci. Technol. 87, 380–390 (2018). https://doi.org/10.1007/s10971-018-4700-4

    Article  CAS  Google Scholar 

  49. A. Baldwin, B.W. Booth, Biomedical applications of tannic acid. J. Biomater. Appl. 36, 1503–1523 (2022). https://doi.org/10.1177/08853282211058099

    Article  CAS  PubMed  Google Scholar 

  50. E.D. Bartzoka, H. Lange, G. Poce, C. Crestini, Stimuli-responsive tannin–FeIII hybrid microcapsules demonstrated by the active release of an anti-tuberculosis agent. Chemsuschem 11, 3975–3991 (2018). https://doi.org/10.1002/cssc.201801546

    Article  CAS  PubMed  Google Scholar 

  51. P. Dharmalingam, G. Palani, R. Apsari, K. Kannan, S.K. Lakkaboyana, K. Venkateswarlu, V. Kumar, Y. Ali, Synthesis of metal oxides/sulfides-based nanocomposites and their environmental applications: a review. Mater. Today Sustain. 20, 100232 (2022). https://doi.org/10.1016/j.mtsust.2022.100232

    Article  Google Scholar 

  52. M.B. Tahir, M. Rafique, M.S. Rafique, N. Fatima, Z. Israr, Metal oxide- and metal sulfide-based nanomaterials as photocatalysts, in Nanotechnology and Photocatalysis for Environmental Applications. (Elsevier, 2020), pp.77–96. https://doi.org/10.1016/B978-0-12-821192-2.00006-1

    Chapter  Google Scholar 

  53. G.B. Subbaiah, K.V. Ratnam, S. Janardhan, K. Shiprath, H. Manjunatha, M. Ramesha, N.V.K. Prasad, S. Ramesh, T.A. Babu, Metal and metal oxide based advanced ceramics for electrochemical biosensors: a short review. Front Mater (2021). https://doi.org/10.3389/fmats.2021.682025

    Article  Google Scholar 

  54. W. Guan, N. Tang, K. He, X. Hu, M. Li, K. Li, Gas-sensing performances of metal oxide nanostructures for detecting dissolved gases: a mini review. Front. Chem. (2020). https://doi.org/10.3389/fchem.2020.00076

    Article  PubMed  PubMed Central  Google Scholar 

  55. Y.D. Tretyakov, E.A. Goodilin, Chemical design of metal-oxide superconductors. Phys. B: Condens. Matter 321(14), 249–256 (2002)

    Article  CAS  Google Scholar 

  56. P. Kurzweil, Precious metal oxides for electrochemical energy converters: Pseudocapacitance and pH dependence of redox processes. J. Power. Sources 190, 189–200 (2009). https://doi.org/10.1016/j.jpowsour.2008.08.033

    Article  CAS  Google Scholar 

  57. J.C. Védrine, Heterogeneous catalysis on metal oxides. Catalysts (2017). https://doi.org/10.3390/catal7110341

    Article  Google Scholar 

  58. P. Rani, V. Kumar, P.P. Singh, A.S. Matharu, W. Zhang, K.-H. Kim, J. Singh, M. Rawat, Highly stable AgNPs prepared via a novel green approach for catalytic and photocatalytic removal of biological and non-biological pollutants. Environ. Int. 143, 105924 (2020). https://doi.org/10.1016/j.envint.2020.105924

    Article  CAS  PubMed  Google Scholar 

  59. J. Singh, V. Kumar, S. Singh Jolly, K.-H. Kim, M. Rawat, D. Kukkar, Y.F. Tsang, Biogenic synthesis of silver nanoparticles and its photocatalytic applications for removal of organic pollutants in water. J. Ind. Eng. Chem. 80, 247–257 (2019). https://doi.org/10.1016/j.jiec.2019.08.002

    Article  CAS  Google Scholar 

  60. Y. Wu, C. Wadia, W. Ma, B. Sadtler, A.P. Alivisatos, Synthesis and photovoltaic application of Copper(I) sulfide nanocrystals. Nano Lett. 8, 2551–2555 (2008). https://doi.org/10.1021/nl801817d

    Article  CAS  PubMed  Google Scholar 

  61. T.-L. Li, Y.-L. Lee, H. Teng, CuInS2 quantum dots coated with CdS as high-performance sensitizers for TiO2 electrodes in photoelectrochemical cells. J. Mater. Chem. 21, 5089 (2011). https://doi.org/10.1039/c0jm04276e

    Article  CAS  Google Scholar 

  62. M.J. Bierman, S. Jin, Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ. Sci. 2, 1050 (2009). https://doi.org/10.1039/b912095e

    Article  CAS  Google Scholar 

  63. H.-R. Kim, A. Haensch, I.-D. Kim, N. Barsan, U. Weimar, J.-H. Lee, The role of NiO doping in reducing the impact of humidity on the performance of SnO2-based gas sensors: synthesis strategies, and phenomenological and spectroscopic studies. Adv. Funct. Mater. 21, 4456–4463 (2011). https://doi.org/10.1002/adfm.201101154

    Article  CAS  Google Scholar 

  64. N. Yamazoe, Toward innovations of gas sensor technology. Sens Actuators B Chem 108, 2–14 (2005). https://doi.org/10.1016/j.snb.2004.12.075

    Article  CAS  Google Scholar 

  65. N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: how to? Sens Actuators B Chem 121, 18–35 (2007). https://doi.org/10.1016/j.snb.2006.09.047

    Article  CAS  Google Scholar 

  66. A. Umar, Y.-B. Hahn, Metal Oxide Nanostructures and Their Applications (American Scientific Publishers, Los Angeles, 2010)

    Google Scholar 

  67. V. Guidi, B. Fabbri, A. Gaiardo, S. Gherardi, A. Giberti, C. Malagù, G. Zonta, P. Bellutti, Metal sulfides as a new class of sensing materials. Procedia Eng. 120, 138–141 (2015). https://doi.org/10.1016/j.proeng.2015.08.586

    Article  CAS  Google Scholar 

  68. S. Laurichesse, L. Avérous, Chemical modification of lignins: towards biobased polymers. Prog. Polym. Sci. 39, 1266–1290 (2014). https://doi.org/10.1016/j.progpolymsci.2013.11.004

    Article  CAS  Google Scholar 

  69. A. Duval, M. Lawoko, A review on lignin-based polymeric, micro- and nano-structured materials. React. Funct. Polym. 85, 78–96 (2014). https://doi.org/10.1016/j.reactfunctpolym.2014.09.017

    Article  CAS  Google Scholar 

  70. C. Wang, S.S. Kelley, R.A. Venditti, Lignin-based thermoplastic materials. Chemsuschem 9, 770–783 (2016). https://doi.org/10.1002/cssc.201501531

    Article  CAS  PubMed  Google Scholar 

  71. P. Figueiredo, K. Lintinen, J.T. Hirvonen, M.A. Kostiainen, H.A. Santos, Properties and chemical modifications of lignin: towards lignin-based nanomaterials for biomedical applications. Prog. Mater. Sci. 93, 233–269 (2018). https://doi.org/10.1016/j.pmatsci.2017.12.001

    Article  CAS  Google Scholar 

  72. M.S. Ganewatta, H.N. Lokupitiya, C. Tang, Lignin biopolymers in the age of controlled polymerization. Polymers (Basel) 11, 1176 (2019). https://doi.org/10.3390/polym11071176

    Article  CAS  PubMed  Google Scholar 

  73. T.M. Budnyak, A. Slabon, M.H. Sipponen, Lignin-inorganic interfaces: chemistry and applications from adsorbents to catalysts and energy storage materials. Chemsuschem 13, 4344–4355 (2020). https://doi.org/10.1002/cssc.202000216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. M.N. Collins, M. Nechifor, F. Tanasă, M. Zănoagă, A. McLoughlin, M.A. Stróżyk, M. Culebras, C.-A. Teacă, Valorization of lignin in polymer and composite systems for advanced engineering applications: a review. Int. J. Biol. Macromol. 131, 828–849 (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.069

    Article  CAS  PubMed  Google Scholar 

  75. W.-J. Liu, H. Jiang, H.-Q. Yu, Thermochemical conversion of lignin to functional materials: a review and future directions. Green Chem. 17, 4888–4907 (2015). https://doi.org/10.1039/C5GC01054C

    Article  CAS  Google Scholar 

  76. K.-T. Chung, T.Y. Wong, C.-I. Wei, Y.-W. Huang, Y. Lin, Tannins and human health: a review. Crit. Rev. Food Sci. Nutr. 38, 421–464 (1998). https://doi.org/10.1080/10408699891274273

    Article  CAS  PubMed  Google Scholar 

  77. R. Armitage, G.S. Bayliss, J.W. Gramshaw, E. Haslam, R.D. Haworth, K. Jones, H.J. Rogers, T. Searle, 360. Gallotannins. Part III. The constitution of Chinese, Turkish, Sumach, and tara tannins. J. Chem. Soc. (Resumed) (1961). https://doi.org/10.1039/jr9610001842

    Article  Google Scholar 

  78. G. Britton, P.W. Crabtree, E. Haslam, J.E. Stangroom, Gallotannins. Part XIII. The structure of Chinese gallotannin: evidence for a polygalloyl chain. J. Chem. Soc. C: Org. (1966). https://doi.org/10.1039/j39660000783

    Article  Google Scholar 

  79. Z. Guo, W. Xie, J. Lu, X. Guo, J. Xu, W. Xu, Y. Chi, N. Takuya, H. Wu, L. Zhao, Tannic acid-based metal phenolic networks for bio-applications: a review. J. Mater. Chem. B 9, 4098–4110 (2021). https://doi.org/10.1039/D1TB00383F

    Article  CAS  PubMed  Google Scholar 

  80. J.H. Park, S. Choi, H.C. Moon, H. Seo, J.Y. Kim, S.-P. Hong, B.S. Lee, E. Kang, J. Lee, D.H. Ryu, I.S. Choi, Antimicrobial spray nanocoating of supramolecular Fe(III)-tannic acid metal-organic coordination complex: applications to shoe insoles and fruits. Sci. Rep. 7, 6980 (2017). https://doi.org/10.1038/s41598-017-07257-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. H. Ejima, J.J. Richardson, K. Liang, J.P. Best, M.P. van Koeverden, G.K. Such, J. Cui, F. Caruso, One-step assembly of coordination complexes for versatile film and particle engineering. Science 341(2013), 154–157 (1979). https://doi.org/10.1126/science.1237265

    Article  CAS  Google Scholar 

  82. X. Wang, W. Cai, D. Ye, Y. Zhu, M. Cui, J. Xi, J. Liu, W. Xing, Bio-based polyphenol tannic acid as universal linker between metal oxide nanoparticles and thermoplastic polyurethane to enhance flame retardancy and mechanical properties. Compos. B Eng. 224, 109206 (2021). https://doi.org/10.1016/j.compositesb.2021.109206

    Article  CAS  Google Scholar 

  83. N.A. Che Lah, P. Murthy, M.N. Mohd Zubir, The physical and optical investigations of the tannic acid functionalised Cu-based oxide nanostructures. Sci. Rep. 12, 9909 (2022). https://doi.org/10.1038/s41598-022-14281-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. V. Kozlovskaya, E. Kharlampieva, I. Drachuk, D. Cheng, V.V. Tsukruk, Responsive microcapsule reactors based on hydrogen-bonded tannic acid layer-by-layer assemblies. Soft Matter 6, 3596 (2010). https://doi.org/10.1039/b927369g

    Article  CAS  Google Scholar 

  85. L. Zou, P. Shao, K. Zhang, L. Yang, D. You, H. Shi, S.G. Pavlostathis, W. Lai, D. Liang, X. Luo, Tannic acid-based adsorbent with superior selectivity for lead(II) capture: adsorption site and selective mechanism. Chem. Eng. J. 364, 160–166 (2019). https://doi.org/10.1016/j.cej.2019.01.160

    Article  CAS  Google Scholar 

  86. Z. Fu, R. Chen, Study of complexes of tannic acid with Fe(III) and Fe(II). J. Anal. Methods Chem. 2019, 1–6 (2019). https://doi.org/10.1155/2019/3894571

    Article  CAS  Google Scholar 

  87. J. Guo, Y. Ping, H. Ejima, K. Alt, M. Meissner, J.J. Richardson, Y. Yan, K. Peter, D. von Elverfeldt, C.E. Hagemeyer, F. Caruso, Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew. Chem. Int. Ed. 53, 5546–5551 (2014). https://doi.org/10.1002/anie.201311136

    Article  CAS  Google Scholar 

  88. S. Kalidas Sivaraman, I. Elango, S. Kumar, V. Santhanam, A green protocol for room temperature synthesis of silver nanoparticles in seconds. Curr. Sci. 97(7), 1055–1059 (2009)

    Google Scholar 

  89. X. Tian, W. Wang, G. Cao, A facile aqueous-phase route for the synthesis of silver nanoplates. Mater. Lett. 61, 130–133 (2007). https://doi.org/10.1016/j.matlet.2006.04.021

    Article  CAS  Google Scholar 

  90. S. Aswathy Aromal, D. Philip, Facile one-pot synthesis of gold nanoparticles using tannic acid and its application in catalysis. Phys. E Low Dimens. Syst. Nanostruct. 44, 1692–1696 (2012). https://doi.org/10.1016/j.physe.2012.04.022

    Article  CAS  Google Scholar 

  91. İ Gülçin, Z. Huyut, M. Elmastaş, H.Y. Aboul-Enein, Radical scavenging and antioxidant activity of tannic acid. Arab. J. Chem. 3, 43–53 (2010). https://doi.org/10.1016/j.arabjc.2009.12.008

    Article  CAS  Google Scholar 

  92. J.G. Manjunatha, B.E.K. Swamy, G.P. Mamatha, O. Gilbert, B.N. Chandrashekar, B.S. Sherigara, Electrochemical studies of dopamine and epinephrine at a poly (tannic acid) modified carbon paste electrode: a cyclic voltammetric study. Int. J. Electrochem. Sci. 5, 1236–1245 (2010). https://doi.org/10.1016/S1452-3981(23)15358-2

    Article  CAS  Google Scholar 

  93. B. Çakıroğlu, M. Özacar, Tannic acid modified electrochemical biosensor for glucose sensing based on direct electrochemistry. Electroanalysis 29, 2719–2726 (2017). https://doi.org/10.1002/elan.201700420

    Article  CAS  Google Scholar 

  94. A.L. Suherman, S. Kuss, E.E.L. Tanner, N.P. Young, R.G. Compton, Electrochemical Hg2+ detection at tannic acid-gold nanoparticle modified electrodes by square wave voltammetry. Analyst 143, 2035–2041 (2018). https://doi.org/10.1039/C8AN00508G

    Article  CAS  PubMed  Google Scholar 

  95. M. Mehmandoust, S. Çakar, M. Özacar, N. Erk, The determination of timolol maleate using silver/tannic acid/titanium oxide nanocomposite as an electrochemical sensor in real samples. Electroanalysis 34, 1150–1162 (2022). https://doi.org/10.1002/elan.202100363

    Article  CAS  Google Scholar 

  96. A.L. Suherman, E.E.L. Tanner, S. Kuss, S.V. Sokolov, J. Holter, N.P. Young, R.G. Compton, Voltammetric determination of aluminium(III) at tannic acid capped-gold nanoparticle modified electrodes. Sens. Actuators B Chem. 265, 682–690 (2018). https://doi.org/10.1016/j.snb.2018.03.098

    Article  CAS  Google Scholar 

  97. M. Wang, F. Pan, L. Yang, Y. Song, H. Wu, X. Cheng, G. Liu, H. Yang, H. Wang, Z. Jiang, X. Cao, Graphene oxide quantum dots incorporated nanocomposite membranes with high water flux for pervaporative dehydration. J Memb Sci 563, 903–913 (2018). https://doi.org/10.1016/j.memsci.2018.06.062

    Article  CAS  Google Scholar 

  98. S. Li, S. Du, S. Liu, B. Su, L. Han, Ultra-smooth and ultra-thin polyamide thin film nanocomposite membranes incorporated with functionalized MoS2 nanosheets for high performance organic solvent nanofiltration. Sep. Purif. Technol. 291, 120937 (2022). https://doi.org/10.1016/j.seppur.2022.120937

    Article  CAS  Google Scholar 

  99. C. Zhang, D.-F. Hu, J.-W. Xu, M.-Q. Ma, H. Xing, K. Yao, J. Ji, Z.-K. Xu, Polyphenol-assisted exfoliation of transition metal dichalcogenides into nanosheets as photothermal nanocarriers for enhanced antibiofilm activity. ACS Nano 12, 12347–12356 (2018). https://doi.org/10.1021/acsnano.8b06321

    Article  CAS  PubMed  Google Scholar 

  100. Q. Wei, R. Haag, Universal polymer coatings and their representative biomedical applications. Mater. Horiz. 2, 567–577 (2015). https://doi.org/10.1039/C5MH00089K

    Article  CAS  Google Scholar 

  101. Y. Tian, K.-H. Wu, X. Tan, Q. Zeng, R. Amal, D.-W. Wang, Hydrophilic tannic acid-modified WS 2 nanosheets for enhanced polysulfide conversion in aqueous media. J. Phys.: Energy 1, 015005 (2018). https://doi.org/10.1088/2515-7655/aaead4

    Article  CAS  Google Scholar 

  102. A. Jędrzak, T. Rębiś, M. Kuznowicz, T. Jesionowski, Bio-inspired magnetite/lignin/polydopamine-glucose oxidase biosensing nanoplatform. From synthesis, via sensing assays to comparison with others glucose testing techniques. Int. J. Biol. Macromol. 127, 677–682 (2019). https://doi.org/10.1016/j.ijbiomac.2019.02.008

    Article  CAS  PubMed  Google Scholar 

  103. M. Martín, P. Salazar, C. Jiménez, M. Lecuona, M.J. Ramos, J. Ode, J. Alcoba, R. Roche, R. Villalonga, S. Campuzano, J.M. Pingarrón, J.L. González-Mora, Rapid Legionella pneumophila determination based on a disposable core–shell Fe3O4 @poly(dopamine) magnetic nanoparticles immunoplatform. Anal. Chim. Acta 887, 51–58 (2015). https://doi.org/10.1016/j.aca.2015.05.048

    Article  CAS  PubMed  Google Scholar 

  104. A. Jędrzak, T. Rębiś, M. Kuznowicz, A. Kołodziejczak-Radzimska, J. Zdarta, A. Piasecki, T. Jesionowski, Advanced Ga2O3/lignin and ZrO2/lignin hybrid microplatforms for glucose oxidase immobilization: evaluation of biosensing properties by catalytic glucose oxidation. Catalysts 9, 1044 (2019). https://doi.org/10.3390/catal9121044

    Article  CAS  Google Scholar 

  105. G.A. El-Fatah, H.S. Magar, R.Y.A. Hassan, R. Mahmoud, A.A. Farghali, M.E.M. Hassouna, A novel gallium oxide nanoparticles-based sensor for the simultaneous electrochemical detection of Pb2+, Cd2+ and Hg2+ ions in real water samples. Sci. Rep. (2022). https://doi.org/10.1038/s41598-022-24558-y

    Article  PubMed  PubMed Central  Google Scholar 

  106. A. Puangjan, S. Chaiyasith, An efficient ZrO2/Co3O4/reduced graphene oxide nanocomposite electrochemical sensor for simultaneous determination of gallic acid, caffeic acid and protocatechuic acid natural antioxidants. Electrochim. Acta (2016). https://doi.org/10.1016/j.electacta.2016.04.185

    Article  Google Scholar 

  107. P. Bansal, G. Bhanjana, N. Prabhakar, J.S. Dhau, G.R. Chaudhary, Electrochemical sensor based on ZrO2 NPs/Au electrode sensing layer for monitoring hydrazine and catechol in real water samples. J. Mol. Liq. (2017). https://doi.org/10.1016/j.molliq.2017.10.098

    Article  Google Scholar 

  108. R. Chokkareddy, G.G. Redhi, T. Karthick, A lignin polymer nanocomposite based electrochemical sensor for the sensitive detection of chlorogenic acid in coffee samples. Heliyon 5, 1457 (2019). https://doi.org/10.1016/j.heliyon.2019

    Article  Google Scholar 

  109. M.R. Olthof, P.C.H. Hollman, M.B. Katan, Chlorogenic acid and caffeic acid are absorbed in humans. J. Nutr. (2001). https://doi.org/10.1093/jn/131.1.66

    Article  PubMed  Google Scholar 

  110. M.R. Olthof, P.C.H. Hollman, M.B. Katan, Human nutrition and metabolism chlorogenic acid and caffeic acid are absorbed in humans. J. Nutr. 131(1), 66–71 (2001)

    Article  CAS  PubMed  Google Scholar 

  111. R. Chokkareddy, G.G. Redhi, T. Karthick, A lignin polymer nanocomposite based electrochemical sensor for the sensitive detection of chlorogenic acid in coffee samples. Heliyon 5, e01457 (2019). https://doi.org/10.1016/j.heliyon.2019.e01457

    Article  PubMed  PubMed Central  Google Scholar 

  112. L. Wang, X. Pan, L. Jiang, Y. Chu, S. Gao, X. Jiang, Y. Zhang, Y. Chen, S. Luo, C. Peng, The biological activity mechanism of chlorogenic acid and its applications in food industry: a review. Front. Nutr. (2022). https://doi.org/10.3389/fnut.2022.943911

    Article  PubMed  PubMed Central  Google Scholar 

  113. S. Antherjanam, B. Saraswathyamma, Simultaneous electrochemical determination of hydrazine and hydroxylamine on a thiadiazole derivative modified pencil graphite electrode. Mater. Chem. Phys. 275, 125223 (2021). https://doi.org/10.1016/j.matchemphys.2021.125223

    Article  CAS  Google Scholar 

  114. K.A. Mahmoud, A. Abdel-Wahab, M. Zourob, Selective electrochemical detection of 2,4,6-trinitrotoluene (TNT) in water based on poly(styreneco-acrylic acid) PSA/SiO2/Fe3O4/AuNPs/lignin-modified glassy carbon electrode. Water Sci. Technol. (2015). https://doi.org/10.2166/wst.2015.399

    Article  PubMed  Google Scholar 

  115. L. Zhang, Y. Han, J. Zhu, Y. Zhai, S. Dong, Simple and sensitive fluorescent and electrochemical trinitrotoluene sensors based on aqueous carbon dots. Anal. Chem. (2015). https://doi.org/10.1021/ac5043686

    Article  PubMed  PubMed Central  Google Scholar 

  116. Y. Wei, M. Song, L. Yu, X. Tang, Preparation of ZnO-loaded lignin-based carbon fiber for the electrocatalytic oxidation of hydroquinone. Catalysts (2017). https://doi.org/10.3390/catal7060180

    Article  Google Scholar 

  117. K. Ahmad, P. Kumar, S.M. Mobin, A highly sensitive and selective hydroquinone sensor based on a newly designed N-rGO/SrZrO3 composite. Nanoscale Adv. (2020). https://doi.org/10.1039/c9na00573k

    Article  PubMed  PubMed Central  Google Scholar 

  118. A. Karthika, V. Ramasamy Raja, P. Karuppasamy, A. Suganthi, M. Rajarajan, A novel electrochemical sensor for determination of hydroquinone in water using FeWO4/SnO2 nanocomposite immobilized modified glassy carbon electrode. Arab. J. Chem. (2020). https://doi.org/10.1016/j.arabjc.2019.06.008

    Article  Google Scholar 

  119. Y. Zhang, F. Wen, Z. Huang, J. Tan, Z. Zhou, K. Yuan, H. Wang, Nitrogen doped lignocellulose/binary metal sulfide modified electrode: preparation and application for non-enzymatic ascorbic acid, dopamine and nitrite sensing. J. Electroanal. Chem. 806, 150–157 (2017). https://doi.org/10.1016/j.jelechem.2017.10.066

    Article  CAS  Google Scholar 

  120. F. Ghaemi, L.C. Abdullah, H. Ariffin, Lignocellulose structure and the effect on nanocellulose production, in Lignocellulose for Future Bioeconomy. (Elsevier, NY, 2019), pp.17–30

    Chapter  Google Scholar 

  121. M. Vasudevan, V. Perumal, S. Karuppanan, M. Ovinis, P. Bothi Raja, S.C.B. Gopinath, T.N.J. Immanuel Edison, A comprehensive review on biopolymer mediated nanomaterial composites and their applications in electrochemical sensors. Crit. Rev. Anal. Chem. (2022). https://doi.org/10.1080/10408347.2022.2135090

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Amrita Vishwa Vidyapeetham, Amritapuri campus for the internal support.

Author information

Authors and Affiliations

Authors

Contributions

Data collection was done by Devu C, Sreelekshmi S, Chandana R, Sivanand P and Santhy A. Editing and reviewing were done by Seetha Lakshmi K C and Rejithamol R.

Corresponding author

Correspondence to R. Rejithamol.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devu, C., Sreelakshmi, S., Chandana, R. et al. Recent progress in tannin and lignin blended metal oxides and metal sulfides as smart materials for electrochemical sensor applications. ANAL. SCI. 40, 981–996 (2024). https://doi.org/10.1007/s44211-024-00544-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-024-00544-4

Keywords

Navigation