Skip to main content
Log in

PLA/CS-ZnO bionanocomposite for rapid catalytic reduction of nitrophenol compounds as a heterogeneous nanocatalyst

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In this research, a high efficiency and environmentally friendly method to reduce nitrophenol compounds such as 4-nitrophenol (4-NP), 2,4,6-trinitrophenol (2,4,6-TNP) and 2,4-dinitrophenol (2,4-DNP) was used in the presence of poly(lactic acid)/chitosan-ZnO ( PLA/CS-ZnO) bionanocomposite. Using FT-IR, SEM, XRD and UV–Vis techniques, PLA/CS-ZnO bionanocomposite was identified after synthesis. Also, the mechanical properties of the bionanocomposite were investigated using the stress–strain curve. The mentioned bionanocomposite showed a very good efficiency in reducing nitrophenol compounds to aminophenolic compounds, so that under optimal conditions, 100% conversion and selectivity in the reduction of 4-NP, 2,4,6-TNP and 2,4-DNP to 4-aminophenol (4-AP), 2,4,6-triaminophenol (2,4,6-TAP) and 2,4-diaminophenol (2,4-DAP) were observed. UV–Vis absorption spectrum at different times were used to evaluate the progress of the reaction. Furthermore, after the reaction, PLA/CS-ZnO was recovered and used for the next cycle. The results showed that the bionanocomposite can perform ten consecutive cycles without a significant decrease in efficiency. The comparison of catalytic activity with other catalysts showed that the bionanocomposite synthesized in the present research has a higher efficiency in reduction of nitrophenol compounds.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Y.-T. Woo, D.Y. Lai, Patty’s toxicology (John Wiley & Sons Inc, New York, 2001)

    Google Scholar 

  2. T. Aditya, A. Pal, T. Pal, Chem. Commun. 51, 9410–9431 (2015)

    Article  CAS  Google Scholar 

  3. H. Karimi-Maleh, M. Shafieizadeh, M.A. Taher et al., J. Mol. Liq. 298, 112040 (2020)

    Article  CAS  Google Scholar 

  4. M.E. Mahmoud, M.F. Amira, M.E. Abouelanwar et al., J. Mol. Liq. 299, 112192 (2020)

    Article  CAS  Google Scholar 

  5. B. Huang, Q. Xie, Z. Yang et al., Eco Mat. 2, 12046 (2020)

    Google Scholar 

  6. N. Han, S. Wang, Z. Yao et al., EcoMat 2, 12044 (2020)

    Google Scholar 

  7. Z. Hu, Y. Li, M. Kang et al., EcoMat 2, 12024 (2020)

    Google Scholar 

  8. P. Fan, X. Zhang, H. Deng, X. Guan, Appl. Catal. Environ. 285, 119829 (2021)

    Article  CAS  Google Scholar 

  9. R.D. Neal, R.A. Hughes, P. Sapkota, S. Ptasinska, S. Neretina, ACS Catal. 10, 10040–10050 (2020)

    Article  CAS  Google Scholar 

  10. H.M. Ali, S.M. Ibrahim, E.F. Abo Zeid, A.F. Al-Hossainy, M.A. El-Aal, RSC Adv. 12, 16496 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. S.A. Rasaki, C. Zhao, R. Wang, J. Wang, H. Jiang, M. Yang, Mater. Res. Bull. 119, 110536 (2019)

    Article  CAS  Google Scholar 

  12. H.A. Oualid, O. Amadine, Y. Essamlali, I.M. Kadmiri, A.H. El, M. Zahouily, Nanoscale Adv. 1, 3151–3163 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garcia-Valdivieso G, Arenas-S´anchez E, Horta-Fraijo P, Simakov A, Navarro-Contreras HR, Acosta B (2021) Nanotechnology 32: 315713.

  14. M. Behera, N. Tiwari, A. Basu, S. Rekha Mishra, S. Banerjee, S. Chakrabortty, S.K. Tripathy, Adv. Powder Technol. 32, 2905–2915 (2021)

    Article  CAS  Google Scholar 

  15. M. Bordbar, N. Negahdar, M. Nasrollahzadeh, Sep. Purif. Technol. 191, 295–300 (2018)

    Article  CAS  Google Scholar 

  16. F.S. Alamro, A.M. Mostafa, H.A. Ahmed, A. Toghan, Surf. Interfaces 26, 101406 (2021)

    Article  CAS  Google Scholar 

  17. A.M. Mostafa, E.A. Mwafy, J. Mol. Struct. 1221, 128872 (2020)

    Article  CAS  Google Scholar 

  18. M.T. Alula, P. Lemmens, M.L. Madingwane, Microchem. J. 156, 104976 (2020)

    Article  CAS  Google Scholar 

  19. Bachhav, K. and A.S. Garde, Versatile synthesis of zinc oxide nanoparticles via chemical route: A review. Materials Today: Proceedings (2023)

  20. M. Murariu et al., Molecules 26(7), 2043 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O. Cheerarot, S. Saikrasun, J Elastomers Plastics 55(8), 1173–1198 (2023)

    Article  CAS  Google Scholar 

  22. R. Haddad, M. Faal Maleki, S.M. Sadeghzadeh, H.T. Van, Q.B. Tran, Inorganic Chem. Commun. 139, 109420 (2022)

    Article  CAS  Google Scholar 

  23. R. Haddad, A. Roostaie, J. Spectroscopy (2022). https://doi.org/10.1155/2022/7019037

    Article  Google Scholar 

  24. D. Raoufi, Renewable Energy 50, 932 (2013)

    Article  CAS  Google Scholar 

  25. J. Kaur, S. Singhal, Ceram. Int. 40, 7417 (2014)

    Article  CAS  Google Scholar 

  26. S. Govindan, E.A.K. Nivetha, R. Saravanan, Appl. Nanosci. 2, 299 (2012)

    Article  CAS  Google Scholar 

  27. R. Salehi, Colloids Surf. B. Colloids and Surfaces B 80, 86 (2010)

    Article  CAS  Google Scholar 

  28. P.A.M.H. DadashiBabaeiAbdolrasouli, Polym. Eng. Sci. 62, 869 (2022)

    Article  Google Scholar 

  29. P. Sudhakar, H. Soni, J. Environ. Chem. Eng. 6, 28–36 (2018)

    Article  CAS  Google Scholar 

  30. M. Farooq, S. Shujah, K. Tahir, S. Nazir, A. Ullah Khan, Z.M. Almarhoon, V. Jevtovic, H.N.S. Al-Shehri, S. Tasleem Hussain, A. Ullah, Inorg. Chem. Commun. 136, 109189 (2022)

    Article  CAS  Google Scholar 

  31. S. Kumar, V. Pandit, K. Bhattacharyya, V. Krishnan, Mater. Chem. Phys. 214, 364–376 (2018)

    Article  CAS  Google Scholar 

  32. R. Madhushree, Jaleel UC, Jadan P, Dephan K R. Devi S. Appl. Surf. Sci 10, 100265 (2022)

    Article  Google Scholar 

  33. B. Aklilu Guale, T. Lemma Teshome, Z. Osman Ahmed, G. Mahendra, L. Jaebeom, S. Fedlu Kedir, ACS Omega 7, 30908–30919 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Roostaie.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 55 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roostaie, A., Haddad, R. & Haji Abdolrasouli, M. PLA/CS-ZnO bionanocomposite for rapid catalytic reduction of nitrophenol compounds as a heterogeneous nanocatalyst. ANAL. SCI. 40, 719–729 (2024). https://doi.org/10.1007/s44211-024-00510-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-024-00510-0

Keywords

Navigation