Skip to main content
Log in

Enhanced photocatalytic degradation of Rhodamine B using gold nanoparticles decorated on BaTiO3 with surface plasmon resonance enhancement

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

This study focused on synthesizing and applying gold nanoparticle (Au NP) decorated barium titanate (BaTiO3) nanoparticles for photocatalytic purposes. BaTiO3 NPs were synthesized using a facile hydrothermal method. Various techniques were employed to characterize the structure and morphological characteristics of the prepared materials. The photocatalytic degradation of Rhodamine B over the Au NPs-modified BaTiO3 photocatalysts was studied. Trapping experiments were conducted using different scavengers to elucidate the degradation mechanism and the involvement of photogenerated species. The incorporation of an appropriate amount of Au NPs into the composites resulted in a significant improvement in photocatalytic activity, attributed to the combined effect of Schottky junction at the interface and the surface plasmon resonance of Au NPs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 3
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Francis et al., Green synthesis and characterization of gold and silver nanoparticles using Mussaenda glabrata leaf extract and their environmental applications to dye degradation. Environ. Sci. Pollut. Res. 24(21), 17347–17357 (2017)

    Article  CAS  Google Scholar 

  2. T.A. Saleh, M. Tuzen, A. Sarı, Evaluation of poly (ethylene diamine-trimesoyl chloride)-modified diatomite as efficient adsorbent for removal of rhodamine B from wastewater samples. Environ. Sci. Pollut. Res. 28(39), 55655–55666 (2021)

    Article  CAS  Google Scholar 

  3. P.V. Nidheesh, R. Gandhimathi, Electrolytic removal of Rhodamine B from aqueous solution by peroxicoagulation process. Environ. Sci. Pollut. Res. 21(14), 8585–8594 (2014)

    Article  CAS  Google Scholar 

  4. J. Guo et al., Adsorption and photocatalytic degradation behaviors of rhodamine dyes on surface-fluorinated TiO 2 under visible irradiation. RSC Adv. 6(5), 4090–4100 (2016)

    Article  CAS  Google Scholar 

  5. S.P. Selvin et al., Visible light driven photodegradation of Rhodamine B using cysteine capped ZnO/GO nanocomposite as photocatalyst. J. Mater. Sci. Mater. Electron. 28(9), 6722–6730 (2017)

    Article  Google Scholar 

  6. V.K. Garg et al., Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: a timber industry waste. Dyes Pigm. 63(3), 243–250 (2004)

    Article  CAS  Google Scholar 

  7. S. Allen, B. Koumanova, Decolourisation of water/wastewater using adsorption. J. Univ. Chem. Technol. Metall. 40(3), 175–192 (2005)

    CAS  Google Scholar 

  8. S. Karimifard, M.R.A. Moghaddam, Application of response surface methodology in physicochemical removal of dyes from wastewater: a critical review. Sci. Total. Environ. 640, 772–797 (2018)

    Article  PubMed  Google Scholar 

  9. W.S. Koe et al., An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environ. Sci. Pollut. Res. 27(3), 2522–2565 (2020)

    Article  CAS  Google Scholar 

  10. S. Pai, M.S. Kini, R. Selvaraj, A review on adsorptive removal of dyes from wastewater by hydroxyapatite nanocomposites. Environ. Sci. Pollut. Res. 28(10), 11835–11849 (2021)

    Article  CAS  Google Scholar 

  11. U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photochem. Photobiol., C 9(1), 1–12 (2008)

    Article  CAS  Google Scholar 

  12. D. Chen et al., Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review. J. Clean. Prod. 268, 121725 (2020)

    Article  CAS  Google Scholar 

  13. R. Gusain et al., Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: a comprehensive review. Adv. Coll. Interface. Sci. 272, 102009 (2019)

    Article  CAS  Google Scholar 

  14. Z. Cai et al., An overview of nanomaterials applied for removing dyes from wastewater. Environ. Sci. Pollut. Res. 24(19), 15882–15904 (2017)

    Article  CAS  Google Scholar 

  15. M.T. Buscaglia, V. Buscaglia, R. Alessio, Coating of BaCO3 crystals with TiO2: Versatile approach to the synthesis of BaTiO3 tetragonal nanoparticles. Chem. Mater. 19(4), 711–718 (2007)

    Article  CAS  Google Scholar 

  16. P. Wang et al., A dual chelating sol–gel synthesis of BaTiO3 nanoparticles with effective photocatalytic activity for removing humic acid from water. Mater. Res. Bull. 48(2), 869–877 (2013)

    Article  CAS  Google Scholar 

  17. C. Gao et al., Nanocrystalline semiconducting donor-doped BaTiO3 ceramics for laminated PTC thermistor. J. Eur. Ceram. Soc. 37(4), 1523–1528 (2017)

    Article  CAS  Google Scholar 

  18. Z. Zhou, H. Tang, H.A. Sodano, Vertically aligned arrays of BaTiO3 nanowires. ACS Appl. Mater. Interfaces 5(22), 11894–11899 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. P. Castera et al., Electro-optical modulation based on pockels effect in BaTiO 3 with a multi-domain structure. IEEE Photonics Technol. Lett. 28(9), 990–993 (2016)

    Article  CAS  Google Scholar 

  20. Y. Mao, H. Zhou, S.S. Wong, Synthesis, properties, and applications of perovskite-phase metal oxide nanostructures. Material Matters 5(2), 50 (2010)

    CAS  Google Scholar 

  21. M. Ali et al., Barium titanate nanocubes as a dual electrochemical sensor for detection of dopamine and acetaminophen. J. Electrochem. Soc. 169, 067512 (2022). https://doi.org/10.1149/1945-7111/ac7a67

    Article  CAS  Google Scholar 

  22. M. Thamima, Y. Andou, S. Karuppuchamy, Microwave assisted synthesis of perovskite structured BaTiO3 nanospheres via peroxo route for photocatalytic applications. Ceram. Int. 43(1), 556–563 (2017)

    Article  CAS  Google Scholar 

  23. A. Rani et al., A review on the progress of nanostructure materials for energy harnessing and environmental remediation. J. Nanostruct. Chem. 8(3), 255–291 (2018)

    Article  CAS  Google Scholar 

  24. C. Xu et al., Nanostructured materials for photocatalysis. Chem. Soc. Rev. 48(14), 3868–3902 (2019)

    Article  CAS  PubMed  Google Scholar 

  25. M. Kamali et al., Nanostructured materials via green sonochemical routes–sustainability aspects. Chemosphere 276, 130146 (2021)

    Article  CAS  PubMed  Google Scholar 

  26. C. Yu et al., Remarkably enhanced piezo-photocatalytic performance in BaTiO3/CuO heterostructures for organic pollutant degradation. J. Adv. Ceram. 11(3), 414–426 (2022)

    Article  CAS  Google Scholar 

  27. D. Masekela et al., Application of BaTiO3-based catalysts for piezocatalytic, photocatalytic and piezo-photocatalytic degradation of organic pollutants and bacterial disinfection in wastewater: a comprehensive review. Arab. J. Chem. 16, 104473 (2022)

    Article  Google Scholar 

  28. J. Wu et al., Enhanced pyroelectric catalysis of BaTiO3 nanowires for utilizing waste heat in pollution treatment. ACS Appl. Mater. Interfaces 10(44), 37963–37973 (2018)

    Article  CAS  PubMed  Google Scholar 

  29. G. Panthi, M. Park, Approaches for enhancing the photocatalytic activities of barium titanate: a review. J. Energy Chem. 73, 160–188 (2022)

    Article  CAS  Google Scholar 

  30. Y. Cui et al., Enhanced photocatalytic activity of heterostructured ferroelectric BaTiO3/α-Fe2O3 and the significance of interface morphology control. ACS Appl. Mater. Interfaces 9(29), 24518–24526 (2017)

    Article  CAS  PubMed  Google Scholar 

  31. X. Shen et al., Assembly of colloidal nanoparticles directed by the microstructures of polycrystalline ice. ACS Nano 5(10), 8426–8433 (2011)

    Article  CAS  PubMed  Google Scholar 

  32. S. Zhang et al., SPR enhanced photocatalytic properties of Au-dispersed amorphous BaTiO3 nanocomposite thin films. J. Alloy. Compd. 654, 112–119 (2016)

    Article  CAS  Google Scholar 

  33. Y. Cui, J. Briscoe, S. Dunn, Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3 influence on the carrier separation and stern layer formation. Chem. Mater. 25(21), 4215–4223 (2013)

    Article  CAS  Google Scholar 

  34. Z. Miao et al., Gold nanoparticles decorated on BaTiO3 as photocatalyst: effect of SPR and ferroelectricity. Mater. Res. Express 5(2), 025505 (2018)

    Article  Google Scholar 

  35. Y. Liu et al., Pyroelectric synthesis of metal–BaTiO3 hybrid nanoparticles with enhanced pyrocatalytic performance. ACS Sustain. Chem. Eng. 7(2), 2602–2609 (2018)

    Article  Google Scholar 

  36. A. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56(10), 978 (1939)

    Article  CAS  Google Scholar 

  37. S. Xu et al., Piezotronic effect enhanced plasmonic photocatalysis by Au NPs/BaTiO3 heterostructures. Adv. Func. Mater. 29(13), 1808737 (2019)

    Article  Google Scholar 

  38. Z. Li, D. Kurouski, Nanoscale structural characterization of plasmon-driven reactions. Nanophotonics 10(6), 1657–1673 (2021)

    Article  CAS  Google Scholar 

  39. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3(1), 37–46 (1968)

    Article  CAS  Google Scholar 

  40. M.D.C.B. López et al., Characterization of barium titanate powders: barium carbonate identification. J. Am. Ceram. Soc. 82(7), 1777–1786 (1999)

    Article  Google Scholar 

  41. C. Chao et al., Ferroelectric polarization-enhanced photocatalytic properties and photo-induced charge carrier behavior of Au/BaTiO3. J. Alloy. Compd. 825, 154060 (2020)

    Article  CAS  Google Scholar 

  42. M.M. Khan et al., BaTiO 3@ rGO nanocomposite: enhanced photocatalytic activity as well as improved electrode performance. J. Mater. Sci. Mater. Electron. 32, 12911–12921 (2021)

    Article  CAS  Google Scholar 

  43. W. Wang et al., Large third-order optical nonlinearity in BaTiO3 matrix-embedded metal nanoparticles. Appl. Surf. Sci. 218(1–4), 24–28 (2003)

    Article  CAS  Google Scholar 

  44. Y. Ao et al., Graphene and TiO2 co-modified flower-like Bi2O2CO3: a novel multi-heterojunction photocatalyst with enhanced photocatalytic activity. Appl. Surf. Sci. 355, 411–418 (2015)

    Article  CAS  Google Scholar 

  45. W.Y. Teoh, J.A. Scott, R. Amal, Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors. J. Phys. Chem. Lett. 3(5), 629–639 (2012)

    Article  CAS  PubMed  Google Scholar 

  46. T. Tachikawa, M. Fujitsuka, T. Majima, Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts. J. Phys. Chem. C 111(14), 5259–5275 (2007)

    Article  CAS  Google Scholar 

  47. A. Tarafdar et al., The hazardous threat of bisphenol A: toxicity, detection and remediation. J. Hazard. Mater. 423, 127097 (2022)

    Article  CAS  PubMed  Google Scholar 

  48. X. Mao et al., RhB-sensitized effect on the enhancement of photocatalytic activity of BiOCl toward bisphenol-A under visible light irradiation. Appl. Surf. Sci. 317, 517–525 (2014)

    Article  CAS  Google Scholar 

  49. J. Mei et al., Photo-induced dye-sensitized BiPO4/BiOCl system for stably treating persistent organic pollutants. Appl. Catal. B 285, 119841 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Science and Engineering Research Board, New Delhi (File No. ECR/2016/000298). MA is thankful to CSIR India for the SRF fellowship (File No. 09/013(0921)/2019-EMR-I). DG and CSPT would like to thank Banaras Hindu University, Varanasi for providing seed grant under IoE scheme (Dev. Scheme No. 6031). The authors also acknowledge IIT-BHU and the department of Chemistry for the use of instrumentation facilities.

Funding

This project has received funding from the Banaras Hindu University, Varanasi under IoE scheme (Dev. Scheme No. 6031).

Author information

Authors and Affiliations

Authors

Contributions

DG and CSPT designed the study. MA, PS, and AK contributed to the sample preparation, measurements, data analysis, and discussion. MA wrote the main manuscript with inputs and helps from CSPT and DG. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Debanjan Guin or Chandra Shekhar Pati Tripathi.

Ethics declarations

Conflict of interest

The authors declare the absence of all known competing financial interests or personal relationships which could influence this work.

Ethical approval

All procedures performed in the studies comply with ethical standards.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M., Swami, P., Kumar, A. et al. Enhanced photocatalytic degradation of Rhodamine B using gold nanoparticles decorated on BaTiO3 with surface plasmon resonance enhancement. ANAL. SCI. 40, 643–654 (2024). https://doi.org/10.1007/s44211-023-00496-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00496-1

Keywords

Navigation