Skip to main content
Log in

A turn-on chemiluminescent assay for alkaline phosphatase using two-dimensional Fe-centered metal–organic frameworks as the signaling probe

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Alkaline phosphatase (ALP) is an essential enzyme involved in cell phosphorus metabolism. Developing sensitive and accurate ALP quantitative assays is significant. In this study, a turn-on chemiluminescence (CL) analysis platform for the detection of ALP activity in human serum was established based on two-dimensional (2D) Fe-centered metal–organic frameworks with 1,3,5-benzene tricarboxylic acid as ligands (denoted as 2D Fe-BTC). The 2D Fe-BTC as the signaling probe reacts with ascorbic acid forming reduced Fe-BTC which catalyzes the luminol CL reaction producing a strong CL signal. The 2D Fe-BTC-based luminol CL reaction exhibited good CL responses when the concentration of ascorbic acid was in the range of 5–500 nM. By employing magnesium ascorbyl phosphate (MAP) as the substrate which can be hydrolyzed by ALP to generate ascorbic acid, a turn-on CL assay for the detection of ALP was established. Under optimal conditions, as low as 0.00046 U L−1 of ALP could be sensitively detected with a linear range of 0.001–0.1 U L−1. ALP in human serum can be detected after a simple dilution process without any other pretreatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the.corresponding author on reasonable request.

References

  1. X. Liu, X. Xing, B. Li, Y. Guo, Y. Zhang, Y. Yang, L. Zhang, Biosens. Bioelectron. 81, 460–464 (2016). https://doi.org/10.1016/j.bios.2016.03.030

    Article  CAS  PubMed  Google Scholar 

  2. H. Zhang, L. Zhang, J. Jiang, R. Yu, Anal. Sci. 29, 193–198 (2013). https://doi.org/10.2116/analsci.29.193

    Article  CAS  PubMed  Google Scholar 

  3. A. Hayat, G. Bulbul, S. Andreescu, Biosens. Bioelectron. 56, 334–339 (2014). https://doi.org/10.1016/j.bios.2014.01.003

    Article  CAS  PubMed  Google Scholar 

  4. F. Xiao, Y. Yu, Y. Wu, L. Tian, G. Zhao, H. Pang, J. Du, Biosensors 11, 174 (2021). https://doi.org/10.3390/bios11060174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. X. Zhou, M. Wang, M. Wang, X. Su, A.C.S. Appl, Nano Mater. 4, 7888–7896 (2021). https://doi.org/10.1021/acsanm.1c01220

    Article  CAS  Google Scholar 

  6. H. Wan, Y. Wang, J. Chen, H.-M. Meng, Z. Li, Microchim. Acta 188, 1–8 (2021). https://doi.org/10.1007/s00604-021-04785-2

    Article  CAS  Google Scholar 

  7. R. Oishi, T. Mizuta, K. Sueyoshi, T. Endo, H. Hisamoto, Anal. Sci. 36, 143–145 (2020). https://doi.org/10.2116/analsci.19C013

    Article  CAS  PubMed  Google Scholar 

  8. W. Zhu, Z. Li, L. Dai, W. Yang, Y. Li, Anal. Sci. 39, 297–302 (2023). https://doi.org/10.1007/s44211-022-00241-0

    Article  CAS  PubMed  Google Scholar 

  9. J. Lee, S. Kim, T.H. Kim, S.H. Lee, RSC Adv. 10, 26888–26894 (2020). https://doi.org/10.1039/D0RA03584J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. P. Hu, R. Huang, Y. Xu, T. Li, J. Yin, Y. Yang, Y. Liang, X. Mao, L. Ding, C. Shu, RSC Adv. 13, 2311–2317 (2023). https://doi.org/10.1039/D2RA06956C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. W. Kang, Y. Ding, H. Zhou, Q. Liao, X. Yang, Y. Yang, J. Jiang, M. Yang, Microchim. Acta 182, 1161–1167 (2015). https://doi.org/10.1007/s00604-014-1439-7

    Article  CAS  Google Scholar 

  12. Q. Zhang, C. Zhang, M. Yang, D. Yu, C. Yu, Luminescence 32, 1150–1156 (2017). https://doi.org/10.1002/bio.3302

    Article  CAS  PubMed  Google Scholar 

  13. R. Sarver, C. Higbee, P. Biswas, L. Zhang, N. Banner, J. Rice, M. Mozola, Z. Tollakson, L. Hardrath, M. Bulthaus, J. Zangl, Food Prot. 82, 2119–2125 (2019). https://doi.org/10.4315/0362-028X.JFP-19-153

    Article  CAS  Google Scholar 

  14. S. Albillos, R. Reddy, R. Salter, Food Prot. 74, 1144–1154 (2011). https://doi.org/10.4315/0362-028X.JFP-10-422

    Article  CAS  Google Scholar 

  15. H. Wang, F. Wang, T. Wu, Y. Liu, Anal. Chem. 93, 15794–15801 (2021). https://doi.org/10.1021/acs.analchem.1c04130

    Article  CAS  PubMed  Google Scholar 

  16. M. Díaz-González, C. Fernández-Sánchez, A. Costa-García, Anal. Sci. 18, 1209–1213 (2002). https://doi.org/10.2116/analsci.18.1209

    Article  PubMed  Google Scholar 

  17. K. Hirakawa, M. Katayama, N. Soh, K. Nakano, T. Imato, Anal. Sci. 22, 81–86 (2006). https://doi.org/10.2116/analsci.22.81

    Article  CAS  PubMed  Google Scholar 

  18. L. Cui, C. Zhu, J. Hu, X. Meng, M. Jiang, W. Gao, X. Wang, C. Zhang, Sens. Actuators B Chem. 374, 132779 (2023). https://doi.org/10.1016/j.snb.2022.132779

    Article  CAS  Google Scholar 

  19. Y. Li, R. Wang, A. Fan, Anal. Sci. 36, 1075–1079 (2020). https://doi.org/10.2116/analsci.20P098

    Article  PubMed  Google Scholar 

  20. X. Wu, C. Yang, Z. Jiang, S. Xiao, X. Wang, C. Hu, S. Zhen, D. Wang, C. Huang, Y. Li, Microchim. Acta. 189, 1–8 (2022). https://doi.org/10.1007/s00604-022-05287-5

    Article  CAS  Google Scholar 

  21. J. Xu, H. Zhang, W. Zhang, P. Li, W. Zhang, H. Wang, B. Tang, Chem. Commun. 56, 2431–2434 (2020). https://doi.org/10.1039/C9CC08828H

    Article  CAS  Google Scholar 

  22. L. Xiong, L. Yu, S. Li, L. Feng, Y. Xiao, Microchim. Acta. 188, 236 (2021). https://doi.org/10.1007/s00604-021-04880-4

    Article  CAS  Google Scholar 

  23. Y. Ying, W. Wu, G. He, W. Deng, Y. Tan, Q. Xie, Chem. Commun. 58, 7960–7963 (2022). https://doi.org/10.1039/D2CC02302D

    Article  CAS  Google Scholar 

  24. H. Li, Y. Sun, Y. Li, J. Du, Microchem. J. 160, 105665 (2021). https://doi.org/10.1016/j.microc.2020.105665

    Article  CAS  Google Scholar 

  25. J. Bao, J. Mei, X. Cheng, D. Ren, G. Xu, F. Wei, Y. Sun, Q. Hu, Y. Cen, Microchim. Acta. 188, 3 (2021). https://doi.org/10.1007/s00604-021-04701-8

    Article  CAS  Google Scholar 

  26. A. Yuan, Y. Lu, X. Zhang, Q. Chen, Y. Huang, J. Mater. Chem. B. 8, 9295–9303 (2020). https://doi.org/10.1039/D0TB01598A

    Article  PubMed  Google Scholar 

  27. X. Yi, W. Dong, X. Zhang, J. Xie, Y. Huang, Anal. Bioanal. Chem. 408, 8805–8812 (2016). https://doi.org/10.1007/s00216-016-9681-y

    Article  CAS  PubMed  Google Scholar 

  28. G. Buettner, T. Doherty, T. Bannister, Radiat. Environ. Biophys. 23, 235–243 (1984). https://doi.org/10.1007/BF01407595

    Article  CAS  PubMed  Google Scholar 

  29. S. Kandil, I. Soliman, H. Diab, N. Bedair, M. Mahrous, E. Abdou, Drug Deliv. 29, 534–547 (2022). https://doi.org/10.1080/10717544.2022.2036872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. C. Rhee, M. Molnar, W. Lau, V. Ravel, C. Kovesdy, R. Mehrotra, K. Kalantar-Zadeh, Perit. Dial. Int. J. Int. Soc. Perit. Dial. 34, 732–748 (2014). https://doi.org/10.3747/pdi.2013.00110

    Article  CAS  Google Scholar 

  31. L. Hou, Y. Qin, J. Li, S. Qin, Y. Huang, T. Lin, L. Guo, F. Ye, S. Zhao, Biosens. Bioelectron. 143, 111605 (2019). https://doi.org/10.1016/j.bios.2019.111605

    Article  CAS  PubMed  Google Scholar 

  32. L. Zhao, L. Zhao, Y. Miao, C. Zhang, Int. J. Electrochem. Sci. 13, 1293–1307 (2018). https://doi.org/10.20964/2018.02.04

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (21475094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiping Fan.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1172 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, S., Liang, R. et al. A turn-on chemiluminescent assay for alkaline phosphatase using two-dimensional Fe-centered metal–organic frameworks as the signaling probe. ANAL. SCI. 39, 1541–1550 (2023). https://doi.org/10.1007/s44211-023-00370-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00370-0

Keywords

Navigation