Skip to main content

Advertisement

Log in

Multifunctional lanthanide metal-organic framework based ratiometric fluorescence visual detection platform for alkaline phosphatase activity

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A turn-on/off ratiometric fluorescence detection platform based on multifunctional lanthanide metal-organic framework (Ln-MOF) and an enzymatic cascade reaction is proposed for alkaline phosphatase (ALP) activity assay. L-phosphotyrosine is hydrolyzed to levodopa (L-dopa) by two steps of enzymatic reaction. L-dopa further reacts with naphthoresorcinol to produce carboxyazamonardine with strong emission at 490 nm. In this process, multifunctional Ln-MOF (Cu@Eu-BTC, BTC is the 1,3,5-benzenetricarboxylic acid) acts not only as a nanozyme to catalyze the fluorogenic reaction between L-dopa and naphthoresorcinol but also as a fluorescence internal standard. The emission of Cu@Eu-BTC at 620 nm is quenched by phosphate anions, and the dual-response ratiometric fluorescence (F490/F620) can be achieved. A good linear relationship was obtained between Δ(F490/F620) and ALP activity in the range 0.3–24 U L−1 with the detection limit of 0.02 U L−1. In addition, a portable assay tube was designed for visual and point-of-care testing of ALP activity by color variation (ratiometric chromaticity). Both the ratiometric fluorescence detection and the visual detection methods were successfully applied to monitor ALP activity in human serum samples with recovery between 95.5%–109.0% and 94.0%–110.1%, and relative standard deviation less than 8.1% and 9.5%, respectively. As far as we know, this is the first report of ALP activity assay assisted by multifunctional Ln-MOF.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jiang Y, Li X, Walt DR (2020) Single-molecule analysis determines isozymes of human alkaline phosphatase in serum. Angew Chem Int Ed Eng 59:18010–18015. https://doi.org/10.1002/anie.202007477

    Article  CAS  Google Scholar 

  2. Hou L, Qin Y, Li J, Qin S, Huang Y, Lin T, Guo L, Ye F, Zhao S (2019) A ratiometric multicolor fluorescence biosensor for visual detection of alkaline phosphatase activity via a smartphone. Biosens Bioelectron 143:111605. https://doi.org/10.1016/j.bios.2019.111605

    Article  CAS  PubMed  Google Scholar 

  3. Pandey S, Sharma AK, Sharma KH, Nerthigan Y, Khan MS, Hang D-R, Wu H-F (2018) Rapid naked eye detection of alkaline phosphatase using α-MoO3-x nano-flakes. Sensor Actuat B-Chem 254:514–518. https://doi.org/10.1016/j.snb.2017.06.123

    Article  CAS  Google Scholar 

  4. Tang Z, Chen H, He H, Ma C (2019) Assays for alkaline phosphatase activity: progress and prospects. TrAC Trends Anal Chem 113:32–43. https://doi.org/10.1016/j.trac.2019.01.019

    Article  CAS  Google Scholar 

  5. Shi Y, Yang M, Liu L, Pang Y, Long Y, Zheng H (2018) GTP as a peroxidase-mimic to mediate enzymatic cascade reaction for alkaline phosphatase detection and alkaline phosphatase-linked immunoassay. Sensor Actuat B-Chem 275:43–49. https://doi.org/10.1016/j.snb.2018.08.038

    Article  CAS  Google Scholar 

  6. Sun J, Zhao J, Bao X, Wang Q, Yang X (2018) Alkaline phosphatase assay based on the chromogenic interaction of diethanolamine with 4-aminophenol. Anal Chem 90:6339–6345. https://doi.org/10.1021/acs.analchem.8b01371

    Article  CAS  PubMed  Google Scholar 

  7. Yang Q, Wang X, Peng H, Arabi M, Li J, Xiong H, Choo J, Chen L (2020) Ratiometric fluorescence and colorimetry dual-mode assay based on manganese dioxide nanosheets for visual detection of alkaline phosphatase activity. Sensor Actuat B-Chem 302:127176. https://doi.org/10.1016/j.snb.2019.127176

    Article  CAS  Google Scholar 

  8. Hai Z, Li J, Wu J, Xu J, Liang G (2017) Alkaline phosphatase-triggered simultaneous hydrogelation and chemiluminescence. J Am Chem Soc 139:1041–1044. https://doi.org/10.1021/jacs.6b11041

    Article  CAS  PubMed  Google Scholar 

  9. Zeng Y, Ren JQ, Wang SK, Mai JM, Qu B, Zhang Y, Shen AG, Hu JM (2017) Rapid and reliable detection of alkaline phosphatase by a hot spots amplification strategy based on well-controlled assembly on single nanoparticle. ACS Appl Mater Interfaces 9:29547–29553. https://doi.org/10.1021/acsami.7b09336

    Article  CAS  PubMed  Google Scholar 

  10. Bhimji A, Zaragoza AA, Live LS, Kelley SO (2013) Electrochemical enzyme-linked immunosorbent assay featuring proximal reagent generation: detection of human immunodeficiency virus antibodies in clinical samples. Anal Chem 85:6813–6819. https://doi.org/10.1021/ac4009429

    Article  CAS  PubMed  Google Scholar 

  11. Zhao J, Wang S, Lu S, Liu G, Sun J, Yang X (2019) Fluorometric and colorimetric dual-readout immunoassay based on an alkaline phosphatase-triggered reaction. Anal Chem 91:7828–7834. https://doi.org/10.1021/acs.analchem.9b01553

    Article  CAS  PubMed  Google Scholar 

  12. Lee JY, Root HD, Ali R, An W, Lynch VM, Bahring S, Kim IS, Sessler JL, Park JS (2020) Ratiometric turn-on fluorophore displacement ensembles for nitroaromatic explosives detection. J Am Chem Soc 142:19579–19587. https://doi.org/10.1021/jacs.0c08106

    Article  CAS  PubMed  Google Scholar 

  13. Mutoh K, Miyashita N, Arai K, Abe J (2019) Turn-on mode fluorescence switch by using negative photochromic imidazole dimer. J Am Chem Soc 141:5650–5654. https://doi.org/10.1021/jacs.9b01870

    Article  CAS  PubMed  Google Scholar 

  14. Lee MH, Kim JS, Sessler JL (2015) Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem Soc Rev 44:4185–4191. https://doi.org/10.1039/c4cs00280f

    Article  CAS  PubMed  Google Scholar 

  15. Bahari D, Babamiri B, Salimi A, Salimizand H (2021) Ratiometric fluorescence resonance energy transfer aptasensor for highly sensitive and selective detection of Acinetobacter baumannii bacteria in urine sample using carbon dots as optical nanoprobes. Talanta 221:121619. https://doi.org/10.1016/j.talanta.2020.121619

    Article  CAS  PubMed  Google Scholar 

  16. Chen Q, Liu W, Han Y, Li L, Yuan F, Long L, Wang K (2020) Accurately monitoring of sulfur dioxide derivatives in agricultural crop leaf tissues by a novel sensing system. Sensor Actuat B-Chem 323:128711. https://doi.org/10.1016/j.snb.2020.128711

    Article  CAS  Google Scholar 

  17. Hussain E, Cheng C, Li Y, Niu N, Zhou H, Jin X, Kong J, Yu C (2019) Benzo[ghi]perylene & coronene as ratiometric reversible optical oxygen nano-sensors. Sensor Actuat B-Chem 287:27–34. https://doi.org/10.1016/j.snb.2019.02.022

    Article  CAS  Google Scholar 

  18. Zhang S, Lu Z, Li S, Wang T, Li J, Chen M, Chen S, Sun M, Wang Y, Rao H, Liu T (2021) Portable smartphone device-based multi-signal sensing system for on-site and visual determination of alkaline phosphatase in human serum. Mikrochim Acta 188(5):157. https://doi.org/10.1007/s00604-021-04803-3

    Article  CAS  PubMed  Google Scholar 

  19. Huang S, Yao J, Chu X, Ning G, Zhou Z, Liu Y, Xiao Q (2020) A ratiometric fluorescent assay for evaluation of alkaline phosphatase activity based on ionic liquid-functionalized carbon dots. Mikrochim Acta 187(5):271. https://doi.org/10.1007/s00604-020-04264-0

    Article  CAS  PubMed  Google Scholar 

  20. Othong J, Boonmak J, Promarak V, Kielar F, Youngme S (2019) Sonochemical synthesis of carbon dots/lanthanoid MOFs hybrids for white light-emitting diodes with high color rendering. ACS Appl Mater Interfaces 11(47):44421–44429. https://doi.org/10.1021/acsami.9b13814

    Article  CAS  PubMed  Google Scholar 

  21. Chandra Rao P, Mandal S (2018) Europium-based metal-organic framework as a dual luminescence sensor for the selective detection of the phosphate anion and Fe(3+) ion in aqueous media. Inorg Chem 57:11855–11858. https://doi.org/10.1021/acs.inorgchem.8b02017

    Article  CAS  PubMed  Google Scholar 

  22. Asha KS, Bhattacharjee R, Mandal S (2016) Complete transmetalation in a metal-organic framework by metal ion metathesis in a single crystal for selective sensing of phosphate ions in aqueous media. Angew Chem Int Ed Eng 55:11528–11532. https://doi.org/10.1002/anie.201606185

    Article  CAS  Google Scholar 

  23. Yu L, Feng L, Xiong L, Li S, Xu Q, Pan X, Xiao Y (2021) Rational design of dual-emission lanthanide metal-organic framework for visual alkaline phosphatase activity assay. ACS Appl Mater Interfaces 13(10):11646–11656. https://doi.org/10.1021/acsami.1c00134

    Article  CAS  PubMed  Google Scholar 

  24. Singh S, Tripathi P, Kumar N, Nara S (2017) Colorimetric sensing of malathion using palladium-gold bimetallic nanozyme. Biosens Bioelectron 92:280–286. https://doi.org/10.1016/j.bios.2016.11.011

    Article  CAS  PubMed  Google Scholar 

  25. Nandhakumar P, Kim G, Park S, Kim S, Kim S, Park JK, Lee NS, Yoon YH, Yang H (2020) Metal nanozyme with ester hydrolysis activity in the presence of ammonia-borane and its use in a sensitive immunosensor. Angew Chem Int Ed 59:22419–22422. https://doi.org/10.1002/anie.202009737

    Article  CAS  Google Scholar 

  26. Zhang X, Li G, Wu D, Li X, Hu N, Chen J, Chen G, Wu Y (2019) Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosens Bioelectron 137:178–198. https://doi.org/10.1016/j.bios.2019.04.061

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Li B, Ma H, Zhang L, Zhang W (2017) An RGH–MOF as a naked eye colorimetric fluorescent sensor for picric acid recognition. J Mater Chem C 5:4661–4669. https://doi.org/10.1039/c7tc00936d

    Article  CAS  Google Scholar 

  28. Hormozi-Nezhad MR, Moslehipour A, Bigdeli A (2017) Simple and rapid detection of L-dopa based on in situ formation of polylevodopa nanoparticles. Sensor Actuat B-Chem 243:715–720. https://doi.org/10.1016/j.snb.2016.12.059

    Article  CAS  Google Scholar 

  29. Chen X, Wang X, Cao G, Wu Y, Luo H, Ji Z, Shen C, Huo D, Hou C (2020) Colorimetric and fluorescent dual-identification of glutathione based on its inhibition on the 3D ball-flower shaped Cu-hemin-MOF's peroxidase-like activity. Mikrochim Acta 187:601. https://doi.org/10.1007/s00604-020-04565-4

    Article  CAS  PubMed  Google Scholar 

  30. Liu K, You H, Zheng Y, Jia G, Zhang L, Huang Y, Yang M, Song Y, Zhang H (2009) Facile shape-controlled synthesis of luminescent europium benzene-1,3,5-tricarboxylate architectures at room temperature. CrystEngComm 11:2622. https://doi.org/10.1039/b905924p

    Article  CAS  Google Scholar 

  31. Cai Y, Li X, Wu K, Yang X (2019) Electrochemical sensing performance of Eu-BTC and Er-BTC frameworks toward Sunset Yellow. Anal Chim Acta 1062:78–86. https://doi.org/10.1016/j.aca.2019.02.030

    Article  CAS  PubMed  Google Scholar 

  32. Zhao J, Liu G, Sun J, Wang Q, Li ZJ, Yang X (2020) Dual-readout tyrosinase activity assay facilitated by a chromo-fluorogenic reaction between catechols and naphthoresorcin. Anal Chem 92:2316–2322. https://doi.org/10.1021/acs.analchem.9b05204

    Article  CAS  PubMed  Google Scholar 

  33. Li M, Chen J, Wu W, Fang Y, Dong S (2020) Oxidase-like MOF-818 nanozyme with high specificity for catalysis of catechol oxidation. J Am Chem Soc 142:15569–15574. https://doi.org/10.1021/jacs.0c07273

    Article  CAS  PubMed  Google Scholar 

  34. Yang Q, Xu Q, Jiang HL (2017) Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem Soc Rev 46:4774–4808. https://doi.org/10.1039/c6cs00724d

    Article  CAS  PubMed  Google Scholar 

  35. Xie S, Liu Q, Zhu F, Chen M, Wang L, Xiong Y, Zhu Y, Zheng Y, Chen X (2020) AIE-active metal–organic frameworks: facile preparation, tunable light emission, ultrasensitive sensing of copper(II) and visual fluorescence detection of glucose. J Mater Chem C 8(30):10408–10415. https://doi.org/10.1039/d0tc00106f

    Article  CAS  Google Scholar 

  36. Zhao D, Li J, Peng C, Zhu S, Sun J, Yang X (2019) Fluorescence immunoassay based on the alkaline phosphatase triggered in situ fluorogenic reaction of o-phenylenediamine and ascorbic acid. Anal Chem 91:2978–2984. https://doi.org/10.1021/acs.analchem.8b05203

    Article  CAS  PubMed  Google Scholar 

  37. Ye K, Wang L, Song H, Li X, Niu X (2019) Bifunctional MIL-53(Fe) with pyrophosphate-mediated peroxidase-like activity and oxidation-stimulated fluorescence switching for alkaline phosphatase detection. J Mater Chem B 7(31):4794–4800. https://doi.org/10.1039/c9tb00951e

    Article  CAS  PubMed  Google Scholar 

  38. Lv Z, Wang Q, Yang M (2021) DNAzyme-Au nanoprobe coupled with graphene-oxide-loaded hybridization chain reaction signal amplification for fluorometric determination of alkaline phosphatase. Mikrochim Acta 188(1):7. https://doi.org/10.1007/s00604-020-04681-1

    Article  CAS  PubMed  Google Scholar 

  39. Zhao J, Wang S, Lu S, Bao X, Sun J, Yang X (2018) An enzyme cascade-triggered fluorogenic and chromogenic reaction applied in enzyme activity assay and immunoassay. Anal Chem 90:7754–7760. https://doi.org/10.1021/acs.analchem.8b01845

    Article  CAS  PubMed  Google Scholar 

  40. Cai M, Ding C, Wang F, Ye M, Zhang C, Xian Y (2019) A ratiometric fluorescent assay for the detection and bioimaging of alkaline phosphatase based on near infrared Ag2S quantum dots and calcein. Biosens Bioelectron 137:148–153. https://doi.org/10.1016/j.bios.2019.04.057

    Article  CAS  PubMed  Google Scholar 

  41. Liu Q, Li H, Jin R, Li N, Yan X, Su X (2019) Ultrasensitive detection alkaline phosphatase activity using 3-aminophenylboronic acid functionalized gold nanoclusters. Sensor Actuat B-Chem 281:175–181. https://doi.org/10.1016/j.snb.2018.10.083

    Article  CAS  Google Scholar 

  42. Upadhyay Y, Bothra S, Kumar R, Kumar Sk A, Sahoo SK (2020) Mimicking biological process to detect alkaline phosphatase activity using the vitamin B6 cofactor conjugated bovine serum albumin capped CdS quantum dots. Colloids Surf B: Biointerfaces 185:110624. https://doi.org/10.1016/j.colsurfb.2019.110624

    Article  CAS  PubMed  Google Scholar 

  43. Cheng X, Chai Y, Xu J, Wang L, Wei F, Xu G, Sun Y, Hu Q, Cen Y (2020) Enzyme cascade reaction-based ratiometric fluorescence probe for visual monitoring the activity of alkaline phosphatase. Sensor Actuat B-Chem 309:127765. https://doi.org/10.1016/j.snb.2020.127765

    Article  CAS  Google Scholar 

  44. Yao XY, Wang Q, Liu Q, Pang M, Du XM, Zhao B, Li Y, Ruan WJ (2020) Ultrasensitive assay of alkaline phosphatase based on the fluorescent response difference of the metal-organic framework sensor. ACS Omega 5(1):712–717. https://doi.org/10.1021/acsomega.9b03337

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the School of Chemistry and Molecular Science, Wuhan University, for their supply of the Materials Studio software.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 82073811 and 81673394) and the Fundamental Research Funds for the Central Universities (Grant No. 2042020kf1010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxiu Xiao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 8018 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, L., Yu, L., Li, S. et al. Multifunctional lanthanide metal-organic framework based ratiometric fluorescence visual detection platform for alkaline phosphatase activity. Microchim Acta 188, 236 (2021). https://doi.org/10.1007/s00604-021-04880-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04880-4

Keywords

Navigation