Skip to main content
Log in

The use of RGB-tracking of color changes during indigo-reduction processes based on LabVIEW machine vision

  • Advancements in Instrumentation
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The use of an RGB-tracking chart for monitoring the reduction of indigo (color changes) based on the LabVIEW machine vision is demonstrated for the first time. In contrast to a normal analytical chromatographic chart, the time scale is used on the X-axis, but the sum of “RGB-pixels” is used on the Y-axis, instead of “signal intensity”. The RGB-tracking chart was obtained from an investigation of the process involved in the reduction of indigo, in which a PC camera was used as a detector and LabVIEW machine vision was simultaneously operated. As a result, when sodium dithionite (Na2S2O4) and yeast were used, respectively, during the indigo-reduction processes, two types of reduction processes were found; the optimized timing for dyeing can be easily determined from the RGB-tracking charts. Furthermore, based on the changes in HSV (hue, saturation, lightness), the use of sodium dithionite provides a higher number of hue and saturation when clothes & fabric were dyed. In contrast to this, a longer time was required for the yeast solution to reach the same high number for hue and saturation. After comparing several series of dyed fabrics, we found that the use of an RGB-tracking chart is indeed a reliable novel tool for measuring color changes that occur during the chemical reactions that are associated with this process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data availability statements support research data.

References

  1. S. Lasopha, R. Watanesk, S. Dejmanee, Asian J. Chem. 27(1), 28 (2015)

    Article  CAS  Google Scholar 

  2. P. Novotná, J.J. Boon, J. Horst, V. Pacákovsá, Color. Technol. 119(3), 121 (2003)

    Article  Google Scholar 

  3. M. Linhares, S.L.H. Rebelo, M.M.Q. Simões, A.M.S. Silva, M.G.P.M.S. Neves, J.A.S. Cavaleiro, C. Freire, Appl. Catal. A-Gen. 470, 427 (2014)

    Article  CAS  Google Scholar 

  4. V. Buscio, M. Crespi, C. Gutiérrez-Bouzán, Materials 7, 6184 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  5. F. Govaert, E. Temmerman, P. Kiekens, Anal. Chim. Acta. 385(1–3), 307 (1999)

    Article  CAS  Google Scholar 

  6. F. Govaert, E. Temmerman, P. Westbroek, Anal. Commun. 35(5), 153 (1998)

    Article  CAS  Google Scholar 

  7. A. Roessler, Dyes Pigm. 63(1), 29 (2004)

    Article  CAS  Google Scholar 

  8. R.S. Blackburn, T. Bechtold, P. John, Color. Technol. 125(4), 193 (2009)

    Article  CAS  Google Scholar 

  9. A. Vuorema, P. John, M. Keskitalo, M. Anbu Kulandainathan, F. Marken, Dyes Pigm. 76(2), 542 (2008)

    Article  CAS  Google Scholar 

  10. S.K. Nicholson, P. John, Appl. Microbiol. Biotechnol. 68(1), 117 (2005)

    Article  CAS  PubMed  Google Scholar 

  11. T. Vickerstaff, The physical chemistry of dyeing, 2nd edn. (Oliver and Boyd, London, 1954)

    Google Scholar 

  12. N. Meksi, M.B. Tichaa, M. Kechida, M.F. Mhenni, J. Clean. Prod. 24, 149 (2012)

    Article  CAS  Google Scholar 

  13. K.K. Wang, X.Y. Li, J.I. Yao, Earth Environ. Sci. 300(5), 052023 (2019)

    Google Scholar 

  14. Z. Tu, H. der Fátima Silva Lopes, K. Hirota, I. Yumoto, World J. Microbiol. Biotechnol. 35(8), 123 (2019)

    Article  PubMed  Google Scholar 

  15. L. Saikhao, J. Setthayanond, T. Karpkird, P. Suwanruji, MATEC Web Conf. 108, 03001 (2017)

    Article  Google Scholar 

  16. P.M. Nowak, P. Koscielniak, Anal. Chem. 91(16), 10343 (2019)

    Article  CAS  PubMed  Google Scholar 

  17. M.A. Koschan, Digital color image processing (Wiley, Hoboken, 2008)

    Book  Google Scholar 

  18. L. Saikhao, J. Setthayanond, T. Karpkird, T. Bechtold, P. Suwanruji, J. Clean. Prod. 197, 106 (2018)

    Article  CAS  Google Scholar 

  19. M.A. Kulandainathan, K. Patil, A. Muthukumaran, R.B. Chavan, Color. Technol. 123(3), 143 (2007)

    Article  CAS  Google Scholar 

  20. Y.C. Wang, H.T. Chang, W.R. Zhong, C.H. Lin, W.Z. Lee, Y.F. Chang, T. Kasai, Anal. Sci. 38(4), 711 (2022)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Science Council of Taiwan under Contracts No. NSC 111-2113-M-003-007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Huang Lin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiang, HY., Lin, CH. The use of RGB-tracking of color changes during indigo-reduction processes based on LabVIEW machine vision. ANAL. SCI. 39, 1607–1612 (2023). https://doi.org/10.1007/s44211-023-00353-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00353-1

Keywords

Navigation