Skip to main content
Log in

Improved impurity determination of pure organic substances by differential scanning calorimetry with a dynamic method

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry can be used to measure the impurity contents of pure organic substances on the principle of freezing-point depression. Impurity determination by differential scanning calorimetry with a dynamic method, which has the advantages of speediness and convenience, remains to be explored. Here, a series of acetanilide and dibenzothiophene samples with various purities was prepared through zone melting, and the samples were then analyzed by gas chromatography–mass spectrometry. A modified dynamic method, including encapsulating the analyte in a volatile pan through cold welding, remelting the analyte with a low heating rate, calculating the melted fraction considering the area of the tailing under the heat-flow curve, and reducing the error from solid-solution formation, is proposed. Encapsulating with a volatile pan using a proper torque gave an accurate result. Remelting gave a lower impurity content and a more narrow and sooth peak of heat-flow compared with the first melting. The impurity-content results calculated by the modified method were usually higher than those calculated by the ASTM standard method. For acetanilide and dibenzothiophene with impurity contents of less than 0.30%, the modified dynamic method showed good accuracy. The proposed method is applicable to determination of reference materials of organic substances with high purity owing to its accuracy and convenience.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All of the data generated or analyzed during this study are included in this published article and its supplementary material files.

References

  1. R. Zeleny, H. Schimmel, Trend Anal. Chem. 33, 107 (2012)

    Article  CAS  Google Scholar 

  2. K. Ma, H. Wang, M. Zhao, J. Xing, Anal. Chim. Acta 650, 227 (2009)

    Article  CAS  Google Scholar 

  3. N. Gong, S. Liu, W. Xu, Y. Shi, G. Du, Y. Lu, Anal. Methods 5, 784 (2013)

    Article  CAS  Google Scholar 

  4. S. Yang, D. Yang, K. Hu, H. Zhou, Y. Guo, G. Du, Y. Lu, Anal. Bioanal. Chem. 407, 5849 (2015)

    Article  CAS  Google Scholar 

  5. Y. Kitamaki, Y. Shimizu, E. Yoshimura, K. Kato, M. Mumata, J. Jpn. Petrol. Inst. 57, 78 (2014)

    Article  CAS  Google Scholar 

  6. ASTM E928-19, Standard Test Method for Purity by Differential Scanning Calorimetry (ASTM, West Conshohocken, PA, 2019)

    Google Scholar 

  7. G.T. Furukawa, J.H. Piccirelli, M.L. Reilly, in ASTM STP 838, ed. R.L. Blaine, C.K. Schoff (American Society for Testing and Materials, 1984), p. 90

  8. Y. Shimizu, Y. Ohte, X. Bao, S. Otsuka, Y. Kitamaki, K. Ishikawa, T. Ihara, K. Kato, Accred. Qual. Assur. 13, 389 (2008)

    Article  CAS  Google Scholar 

  9. A. Baldan, R. Bosma, A. Peruzzi, A.M.H. van der veen, Y. Shimizu, Int. J. Thermophys. 30, 325 (2009)

    Article  CAS  Google Scholar 

  10. G.J. Davis, R.S. Porter, J. Therm. Anal. 1, 449 (1969)

    Article  CAS  Google Scholar 

  11. D. Sondack, Anal. Chem. 44, 888 (1972)

    Article  CAS  Google Scholar 

  12. H. Staub, W. Perron, Anal. Chem. 46, 128 (1974)

    Article  CAS  Google Scholar 

  13. E.F. Palermo, J. Chiu, Thermochim. Acta 14, 1 (1976)

    Article  CAS  Google Scholar 

  14. A.A. van Dooren, B.W. Müller, Thermochim. Acta 66, 161 (1983)

    Article  Google Scholar 

  15. W.P. Brennan, M.P. DiVito, R.L. Fyans, A.P. Gray, in ASTM STP 838, ed. by R.L. Blaine, C.K. Schoff (American Society for Testing and Materials, 1984), p. 5

  16. A. Ramsland, Anal. Chem. 60, 747 (1988)

    Article  CAS  Google Scholar 

  17. J.R. Donnelly, L.A. Drewes, R.L. Johnson, W.D. Munslow, K.K. Knapp, Thermochim. Acta 167, 155 (1990)

    Article  CAS  Google Scholar 

  18. X.W. An, R. Sabbah, Thermochim. Acta 190, 241 (1991)

    Article  CAS  Google Scholar 

  19. G. Widmann, O. Scherrer, J. Therm. Anal. 1991, 37 (1957)

    Google Scholar 

  20. K. Yamamoto, M. Momota, H. Kitamura, K. Narita, Anal. Sci. 8, 491 (1992)

    Article  CAS  Google Scholar 

  21. D. Giron, C. Goldbronn, J. Therm. Anal. 44, 217 (1995)

    Article  CAS  Google Scholar 

  22. K. Yamamoto, M. Momota, H. Kitamura, K. Narita, Anal. Sci. 12, 893 (1996)

    Article  CAS  Google Scholar 

  23. K. Yoshi, Chem. Pharm. Bull. 45, 338 (1997)

    Article  Google Scholar 

  24. K. Drozdzewska, V. Kestens, A. Held, G. Roebben, T. Linsinger, J. Therm. Anal. Calor. 88, 757 (2007)

    Article  CAS  Google Scholar 

  25. S. Mathkar, S. Kumar, A. Bystol, K. Olawoore, D. Min, R. Markovich, A. Rustum, J. Pharmaceut. Biomed. Anal. 49, 627 (2009)

    Article  CAS  Google Scholar 

  26. V. Kestens, G. Roebben, T. Linsinger, Accred. Qual. Assur. 15, 269 (2010)

    Article  CAS  Google Scholar 

  27. N. Hanari, K. Ishikawa, Y. Shimizu, S. Otsuka, R. Iwasawa, N. Fujiki, M. Numata, T. Yarita, K. Kato, Anal. Bioanal. Chem. 407, 3239 (2015)

    Article  CAS  Google Scholar 

  28. S. Yang, D. Yang, N. Gong, W. Xu, Y. Guo, G. Du, Y. Lu, Accred. Qual. Assur. 21, 287 (2016)

    Article  CAS  Google Scholar 

  29. D. Yang, S. Yang, B. Zhang, Y. Lu, Anal. Methods 8, 89 (2016)

    Article  Google Scholar 

  30. S. Xu, B. Guo, F. Sui, A. Xu, P. Zheng, S. Zhang, Q. Huang, F. Li, Y. Wang, Y. He, Q. Yu, Mapan J. Metrol. Soc. I. 33, 253 (2018)

    Google Scholar 

  31. S.V.R. Mastrangelo, R.W. Dornte, J. Am. Chem. Soc. 77, 6200 (1955)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China (No. 2021YFF0602604) and the Project of the Market Inspector General Administrative Bureau of China (No. 2021MK150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

44211_2022_205_MOESM1_ESM.docx

The melted zone purification apparatus (Fig. S1). The GC–MS chromatographs of acetanilide (Fig. S2) and dibenzothiophene (Fig. S3). The impurity-content results of acetanilide (Table S1) and dibenzothiophene (Table S2) determined by DSC. Experimental results and explanation of calculation of xmodified of high pure sample without modification of error of solid-solution formation (Figs. S4, S5 and S6). Experimental results and explanation of calculation melted fraction by the approximation (Figs. S7, S8 and S9; Table S3). Supplementary file1 (DOCX 848 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, H., Song, X. et al. Improved impurity determination of pure organic substances by differential scanning calorimetry with a dynamic method. ANAL. SCI. 39, 87–96 (2023). https://doi.org/10.1007/s44211-022-00205-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00205-4

Keywords

Navigation