Skip to main content
Log in

One-pot alkanolamines-assisted synthesis of magnetic mesoporous silica for synthetic dye adsorption

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Magnetic mesoporous silica (MMS) was synthesized in a one-pot system using various alkanolamines (triethanolamine, diethanolamine, tris (hydroxymethyl)aminomethane) as a basic catalyst. The characterization of the composites was conducted using scanning electron microscope, transmission electron microscope, X-ray diffractometer, surface area analyzer, and X-ray photoelectros spectroscopy. The MMS synthesized with tris(hydroxymethyl)aminomethane (MMSTRIS) showed the highest specific surface area, pore volume, and average pore diameter. However, when the composites were applied as adsorbents for brilliant green (BG) dye, MMS synthesized with diethanolamine (MMSDEA) showed the highest maximum adsorption capacity of 339.7 mg g−1. The fastest adsorption rate constant of 1.57 × 10−2 g mg−1 min−1 was obtained for MMSTRIS, which has the largest average pore size among all composites. The adsorption kinetic study suggested that the adsorption of BG onto the prepared MMS composites was mainly chemisorption process, which most likely involves electrostatic interaction and hydrogen bonding between BG molecule and the surface of the composites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Zablocka-Godlewska, W. Prystaś, Water Air Soil Pollut. 231, 75 (2020). https://doi.org/10.1007/s11270-020-4441-1

    Article  CAS  Google Scholar 

  2. O. Tunç, H. Tanaci, Z. Aksu, J. Hazard. Mater. 163, 1 (2009). https://doi.org/10.1016/j.jhazmat.2008.06.078

    Article  CAS  Google Scholar 

  3. M.M. Hassan, C.M. Carr, Chemosphere (2018). https://doi.org/10.1016/j.chemosphere.2018.06.043

    Article  PubMed  Google Scholar 

  4. J. Sharma, S. Sharma, V. Soni, Reg. Stud. Mar. Sci. 45, 101802 (2021). https://doi.org/10.1016/j.rsma.2021.101802

    Article  Google Scholar 

  5. A.K. Moorthy, B.G. Rathi, S.P. Shukla, K. Kumar, V.S. Bharti, Environ. Toxicol. Pharmacol. 82, 103552 (2021). https://doi.org/10.1016/j.etap.2020.103552

    Article  CAS  Google Scholar 

  6. M. Hernández-Zamora, H.V. Perales-Vela, C.M. Flores-Ortíz, R.O. Cañizares-Villanueva, Ecotoxicol. Environ. Saf. (2014). https://doi.org/10.1016/j.ecoenv.2014.05.030

    Article  PubMed  Google Scholar 

  7. S.H. Chen, A.S.Y. Ting, J. Environ. Manag. (2015). https://doi.org/10.1016/j.jenvman.2014.09.014

    Article  Google Scholar 

  8. H. Li, S. Liu, J. Zhao, N. Feng, Colloids Surf. A: Physicochem. Eng. Asp. (2016). https://doi.org/10.1016/j.colsurfa.2016.01.048

    Article  Google Scholar 

  9. Y. Kang, H. Yoon, C. Lee, E. Kim, Y. Chang, Water Res. (2019). https://doi.org/10.1016/j.watres.2018.12.038

    Article  PubMed  Google Scholar 

  10. Y. Zhen, G. Yao, Q. Cheng, S. Yu, M. Liu, C. Gao, Desalination (2013). https://doi.org/10.1016/j.desal.2013.08.009

    Article  Google Scholar 

  11. B.K. Nandi, A. Goswami, M.K. Purkait, J. Hazard. Mater. 161, 1 (2009). https://doi.org/10.1016/j.jhazmat.2008.03.110

    Article  CAS  Google Scholar 

  12. I. Konstantinou, T.A. Albanis, Appl. Catal. B. 49, 1 (2004). https://doi.org/10.1016/j.apcatb.2003.11.010

    Article  CAS  Google Scholar 

  13. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Adv. Colloid Interface Sci. (2014). https://doi.org/10.1016/j.cis.2014.04.002

    Article  PubMed  Google Scholar 

  14. V.K. Gupta, P.J.M. Carrott, M.M.L. Ribeiro Carrott, Crit. Rev. Environ. Sci. Technol. (2009). https://doi.org/10.1080/10643380801977610

    Article  Google Scholar 

  15. V.B. Cashin, D.S. Eldridge, A. Yu, D. Zhao, Environ. Sci. Water Res. Technol. (2018). https://doi.org/10.1039/C7EW00322F

    Article  Google Scholar 

  16. C.T. Kresge, M.E. Leonowicz, W.J. Roth, C. Vartuli, J.S. Beck, Nature (1992). https://doi.org/10.1038/359710a0

    Article  Google Scholar 

  17. X. Chen, K.F. Lam, Q. Zhang, B. Pan, M. Arruebo, K.L. Yeung, J. Phys. Chem. C 113, 22 (2009). https://doi.org/10.1021/jp9018052

    Article  CAS  Google Scholar 

  18. S. Egodawatte, A. Datt, E.A. Burns, S.C. Larsen, Langmuir 31, 27 (2015). https://doi.org/10.1021/acs.langmuir.5b01483

    Article  CAS  Google Scholar 

  19. G. Li, Z. Zhao, J. Liu, G. Jiang, J. Hazard. Mater. 192, 1 (2011). https://doi.org/10.1016/j.jhazmat.2011.05.015

    Article  CAS  Google Scholar 

  20. J. Ye, D. Nyobe, B. Tang, L. Bin, P. Li, S. Huang, F. Fu, Y. Cai, G. Guan, X. Hao, J. Mol. Liq. 303, 112656 (2020). https://doi.org/10.1016/j.molliq.2020.112656

    Article  CAS  Google Scholar 

  21. P. Chaikhan, Y. Udnan, R.J. Ampiah-Bonney, W. Chuachuad Chaiyasith, Anal. Sci. 37, 7 (2021). https://doi.org/10.2116/analsci.20P383

    Article  Google Scholar 

  22. S. Nandy, D. Kundu, M.K. Naskar, J. Sol-Gel Sci. Technol. 72, 1 (2014). https://doi.org/10.1007/s10971-014-3420-7

    Article  CAS  Google Scholar 

  23. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 9 (2015). https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  24. J. Kobler, K. Möller, T. Bein, ACS Nano 2, 4 (2008). https://doi.org/10.1021/nn700008s

    Article  CAS  Google Scholar 

  25. T. Radu, C. Iacovita, D. Benea, R. Turcu, Appl. Surf. Sci. (2017). https://doi.org/10.1016/j.apsusc.2017.02.002

    Article  Google Scholar 

  26. M. Kokate, K. Garadkar, A. Gole, J. Mater. Chem. A 1, 16 (2013). https://doi.org/10.1039/C2TA00951J

    Article  Google Scholar 

  27. M. Ganguly, P.A. Ariya, ACS Omega 4, 7 (2019). https://doi.org/10.1021/acsomega.9b00757

    Article  CAS  Google Scholar 

  28. W. Yu, H. Li, L. Zhang, J. Liu, F. Kong, W. Wang, Anal. Sci. 36, 10 (2020). https://doi.org/10.2116/analsci.20P013

    Article  Google Scholar 

  29. A. Kamari, W.S. Wan Ngah, M.Y. Chong, M.L. Cheah, Desalination 249, 3 (2009). https://doi.org/10.1016/j.desal.2009.04.010

    Article  CAS  Google Scholar 

  30. M.A. Al-Ghouti, D.A. Daana, J. Hazard. Mater. 393, 122383 (2020). https://doi.org/10.1016/j.jhazmat.2020.122383

    Article  CAS  PubMed  Google Scholar 

  31. R. Nicola, S. Muntean, M. Nistor, A. Putz, L. Almásy, L. Săcărescu, Chemosphere 261, 127737 (2020). https://doi.org/10.1016/j.chemosphere.2020.127737

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partly supported by JSPS Grants-in-Aid for Scientific Research (KAKENHI, Grant Number: 18K05168), Japan. PL would like to thank the Graduate School of Engineering, Gifu University, for the financial support under the Advanced Global Program (AGP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Wah Lim.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 604 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lestari, P., Lim, L.W., Ohya, Y. et al. One-pot alkanolamines-assisted synthesis of magnetic mesoporous silica for synthetic dye adsorption. ANAL. SCI. 38, 1441–1448 (2022). https://doi.org/10.1007/s44211-022-00183-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00183-7

Keywords

Navigation