Skip to main content
Log in

Synthesis of Multi-component Alloys (Co20Cr20Fe20Mn20Ti20 and Co20Cr20Fe20Mn20Ti20Ni20) by Mechanical Alloying Route

  • Original Paper
  • Published:
High Entropy Alloys & Materials Aims and scope Submit manuscript

Abstract

In this article, equiatomic multicomponent alloys with the compositions of Co20Cr20Fe20Mn20Ti20 and Co20Cr20Fe20Mn20Ti20Ni20 were synthesized by mechanical alloying with 5, 10 and 15 h of milling. During mechanical alloying, there is refinement of particles up to 10 h of milling following which there is agglomeration of particles till 15 h of milling in Co20Cr20Fe20Mn20Ti20 whereas, for Co20Cr20Fe20Mn20Ti20Ni20, the phenomenon of cold-welding predominated up to 10 h of milling following which refinement of particles were observed till 15 h of milling due to fragmentation. X-ray diffraction technique confirmed the presence of body-centered cubic and face-centered cubic phases in both the alloys. There is a considerable decrease in crystallite size and increment in the lattice strain with increase in the milling duration for both the alloys. Both the alloys exhibited nanocrystalline nature after 15 h of milling which was confirmed by high resolution transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang, High Entropy Alloys: Fundamentals and Application (Springer, Cham, 2016)

    Book  Google Scholar 

  2. D.B. Miracle, High entropy alloys as a bold step forward in alloy development. Nat. Commun. (2019). https://doi.org/10.1038/s41467-019-09700-1

    Article  Google Scholar 

  3. J.W. Yeh, S.K. Chen, S.Y. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principle elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. (2004). https://doi.org/10.1002/adem.200300567

    Article  Google Scholar 

  4. D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. (2017). https://doi.org/10.1016/j.actamat.2016.08.081

    Article  Google Scholar 

  5. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects. Mater. Today (2016). https://doi.org/10.1016/j.mattod.2015.11.026

    Article  Google Scholar 

  6. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructure and properties of high entropy alloys. Prog. Mater. Sci. (2014). https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  Google Scholar 

  7. S.W. Goodrich, S. Haas, U. Glatzel, C.H. Liebscher, Towards superior high temperature properties in low density ferritic AlCrFeNiTi compositionally complex alloys. Acta Mater. 216, 117113 (2021). https://doi.org/10.1016/j.actamat.2021.117113

    Article  CAS  Google Scholar 

  8. H. Inui, K. Kishida, C. Zhengo, Recent progress in our understanding of phase stability, atomic structures and mechanical and functional properties of high-entropy alloys. Mater. Trans. (2022). https://doi.org/10.2320/matertrans.MT-M2021234

    Article  Google Scholar 

  9. B.S. Murty, J.W. Yeh, S. Ranganathan, High-entropy Alloys (Butterworth-Heinemann, Elsevier, United Kingdom, 2014)

    Google Scholar 

  10. M.H. Tsai, J.W. Yeh, High-entropy alloys: a critical review. Mater. Res. Lett. (2014). https://doi.org/10.1080/21663831.2014.912690

    Article  Google Scholar 

  11. D.B. Miracle, High-entropy alloys: a current evaluation of founding ideas and core effects and exploring “Nonlinear Alloys.” J. Mater. (2017). https://doi.org/10.1007/s11837-017-2527-z

    Article  Google Scholar 

  12. J. Chen, X. Zhou, W. Wang, A review on fundamental of high entropy alloys with promising high-temperature properties. J. Alloy. Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.05.067

    Article  Google Scholar 

  13. J. Kumar, A. Linda, K. Biswas, Lattice distortion in FCC HEAs and its effect on mechanical properties: critical analysis and way forward. J. Appl. Phys. (2023). https://doi.org/10.1063/5.0144456

    Article  Google Scholar 

  14. A. Seaone, D. Farkas, X.M. Bai, Influence of compositional complexity on species diffusion behavior in high-entropy solid-solution alloys. J. Mater. Res. (2022). https://doi.org/10.1080/21663831.2018.1446466

    Article  Google Scholar 

  15. K.K. Alaneme, M.O. Bodunrin, S.R. Oke, Processing, alloy composition and phase transition effect of the mechanical and corrosion properties of high entropy alloys: a review. J. Mater. Res. Technol. (2016). https://doi.org/10.1016/j.jmrt.2016.03.004

    Article  Google Scholar 

  16. R. Sharma, A. Roy, P.S. De, Equimolar AlCuFeMn: a novel oxidation resistant alloy. Intermetallics (2021). https://doi.org/10.1016/j.intermet.2021.107215

    Article  Google Scholar 

  17. H. Peng, L. Hu, S. Huang, L. Li, I. Baker, A comparison of thermo-mechanically-treated and electron-beam welded strong, ductile medium-entropy alloy: microstructural evolution and deformation mechanisms. Mater. Sci. Eng. A (2023). https://doi.org/10.1016/j.msea.2023.145449

    Article  Google Scholar 

  18. X. Gao, Y. Lu, B. Zhang, N. Liang, G. Wu, G. Sha, Z. Liu, Y. Zhao, Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Mater. (2017). https://doi.org/10.1016/j.actamat.2017.07.041

    Article  Google Scholar 

  19. C. Suryanarayana, Mechanical alloying and milling. Prog. Mater. Science. (2001). https://doi.org/10.1016/S0079-6425(99)00010-9

    Article  Google Scholar 

  20. M.H. Enayati, F.A. Mohamed, Application of mechanical alloying/milling for synthesis of nanocrystalline and amorphous materials. Int. Mater. Rev. (2014). https://doi.org/10.1179/1743280414Y.0000000036

    Article  Google Scholar 

  21. C.C. Coch, Structural nanocrystalline materials: an overview. J. Mater. Sci. (2007). https://doi.org/10.1007/s10853-006-0609-3

    Article  Google Scholar 

  22. S. Gorsse, J.P. Couzinie, D.B. Miracle, From high entropy alloys to complex concentrated alloys. C. R. Phys. (2018). https://doi.org/10.1016/j.crhy.2018.09.004

    Article  Google Scholar 

  23. J. Saha, R. Saha, P.P. Bhatacharjee, Microstructure and texture of severely warm-rolled and annealed coarse-grained CoCrNi medium-entropy alloy (MEA): a perspective on the initial grain size effect. J. Alloy. Compd. 904, 163954 (2022). https://doi.org/10.1016/j.jallcom.2022.163954

    Article  CAS  Google Scholar 

  24. Y. Zhang, High Entropy Materials: Advances and Applications (CRC Press, Boca Raton, 2023)

    Book  Google Scholar 

  25. O.N. Senkov, G.B. Wilks, D.B. Miracle, Refractory high-entropy alloys. Intermetallics (2010). https://doi.org/10.1016/j.intermet.2010.05.014

    Article  Google Scholar 

  26. A. Sharma, S. Dasari, V. Soni, Z. Kloenne, J.P. Couzinnie, O.N. Senkov, D.B. Miracle, S.G. Srinivasan, H. Fraser, R. Banerjee, B2 to ordered omega transformation during isothermal annealing of refractory high entropy alloys: Implications for high temperature phase stability. J. Alloy. Compd. 953, 170065 (2023)

    Article  CAS  Google Scholar 

  27. K.C. Lo, H. Murakami, J.W. Yeh, A.C. Yeh, Oxidation behavior of a novel refractory high entropy alloy at elevated temperatures. Intermetallics (2020). https://doi.org/10.1016/j.intermet.2020.106711

    Article  Google Scholar 

  28. C. Varvenne, W.A. Curtin, Strengthening of high entropy alloys by dilute solute additions: CoCrFeNiAlx and CoCrFeNiMnAlx alloys. Scr. Mater. (2017). https://doi.org/10.1016/j.scriptamat.2017.05.035

    Article  Google Scholar 

  29. T. Gu, L. Wang, Q. Hu, X.B. Liang, D.X. Fu, Y.X. Chen, X.M. Zhao, Y.W. Sheng, Effect of mechanical alloying and sintering behavior on the microstructure and properties of NbMTaWRe refractory high entropy alloy. Met. Mater. Int. (2022). https://doi.org/10.1007/s12540-021-01165-6

    Article  Google Scholar 

  30. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications. Science (2014). https://doi.org/10.1126/science.1254581

    Article  Google Scholar 

  31. T. Yang, Y.L. Zhao, J.H. Luan, B. Han, J. Wei, J.J. Kai, C.T. Liu, Nanoparticles-strengthened high-entropy alloys for cryogenic applications showing an exceptional strength-ductility synergy. Scr. Mater. (2019). https://doi.org/10.1016/j.sciptmat.2019.01.034

    Article  Google Scholar 

  32. H. Cheng, Y. Xie, Q. Tang, C. Rong, Microstructure and mechanical properties of FeCoCrNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Trans. Nonferr. Metal Soc. (2018). https://doi.org/10.1016/S1003-6326(18)64774-0

    Article  Google Scholar 

  33. N. Eibmann, B. Kloden, T. Weibgarber, B. Kieback, High-entropy alloy CoCrFeMnNi produced by powder metallurgy. Powder Metall. (2017). https://doi.org/10.1080/00325899.2017.1318480

    Article  Google Scholar 

  34. S. Mohanty, T.N. Maity, S. Mukhopadhaya, S. Sarkar, N.P. Gurao, S. Bhowmick, K. Biswas, Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: microstructure and mechanical properties. Mater. Sci. Eng. A (2017). https://doi.org/10.1016/j.msea.2016.09.062

    Article  Google Scholar 

  35. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee, K. Niihara, Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. J. Alloy. Compd. (2010). https://doi.org/10.1016/j.jallcom.2009.12.010

    Article  Google Scholar 

  36. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying. J. Alloy. Compd. (2009). https://doi.org/10.1016/j.jallcom.2009.05.144

    Article  Google Scholar 

  37. W. Ji, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, Z. Fu, Alloying behavior and novel properties of CoCrFeMnNi high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics (2015). https://doi.org/10.1016/j.intermet.2014.08.008

    Article  Google Scholar 

  38. S. Guo, C.T. Li, Phase stability in high-entropy alloys: formation of solid solution phase or amorphous phase. Prog. Nat. Sci. Mater. (2011). https://doi.org/10.1016/S1002-0071(12)60080-X

    Article  Google Scholar 

  39. S. Das, P.S. Robi, A novel refractory WMoVCrTa high-entropy alloy possessing fine combination of compressive stress-strain and high hardness properties. Adv. Powder Technol. (2020). https://doi.org/10.1016/j.apt.2020.10.008

    Article  Google Scholar 

  40. W. Chen, A. Hilhorst, G. Bokas, S. Gorsse, J.P. Jacques, G. Hautier, A map of single-phase high-entropy alloys. Nat. Commun. (2023). https://doi.org/10.1038/s41467-023-38423-7

    Article  Google Scholar 

  41. A.M. Manzoni, U. Glatzel, New multiphase compositionally complex alloys driven by high entropy alloy approach. Mater Charact 147, 512 (2019)

    Article  CAS  Google Scholar 

  42. X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. (2012). https://doi.org/10.1016/j.matchemphys.2011.11.021

    Article  Google Scholar 

  43. S. Guo, Ng. Chun, J. Lu, C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. (2011). https://doi.org/10.1063/1.3587228

    Article  Google Scholar 

  44. S. Luo, L. Vitos, C. Zhao, Y. Su, Z. Wang, Predicting phase formation in complex concentrated alloys from first-principles. Comput. Mater. Sci. (2021). https://doi.org/10.1016/j.commatsci.2020.110021

    Article  Google Scholar 

  45. Z. Wang, Y. Huang, Y. Yang, Atomic-size effect and solid solubility of multicomponent alloys. Scr. Mater. (2015). https://doi.org/10.1016/j.scriptamat.2014.09.010

    Article  Google Scholar 

  46. J.S. Benjamin, T.E. Volin, The mechanism of mechanical alloying. Metall. Trans. (1974). https://doi.org/10.1007/BF02644161

    Article  Google Scholar 

  47. Z. Chen, W. Chen, B. Wu, X. Cao, L. Liu, Z. Fu, Effects of Co and Ti on microstructure and mechanical behavior of Al07.5FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering. Mater. Sci. Eng. A (2015). https://doi.org/10.1016/j.msea.2015.08.056

    Article  Google Scholar 

  48. Y.L. Chen, Y.H. Hu, C. Hsieh, J.W. Yeh, S.K. Chen, Competition between elements during mechanical alloying in an octonary-multi-principal-element alloy system. J. Alloy. Compd. (2009). https://doi.org/10.1016/j.jallcom.2009.03.087

    Article  Google Scholar 

  49. S.K. Pabi, J. Joarder, B.S. Murty, Mechanism and kinetics of alloying and nanostructure formation by mechanical methods. Proc. Indian Natl. Sci. Acad. Part A. 67, 1–30 (2001)

    CAS  Google Scholar 

  50. H. Okamoto, M. E. Schlesinger, E. M. Mueller, Alloy Phase Diagrams: Volume 3 (Materials Park, Ohio 2016)

  51. S. Praveen, B.S. Murty, R.S. Kottada, Phase evolution and densification behavior of nanocrystalline multicomponent high entropy alloys during spark plasma sintering. J. Mater. (2013). https://doi.org/10.1007/s11837-013-0759-0

    Article  Google Scholar 

  52. V.K. Portnoi, A.V. Leonov, S.E. Filippova, A.N. Streletskii, A.I. Logacheva, Mechanochemical synthesis and heating-induced transformations of a high-entropy Cr–Fe–Co–Ni–Al–Ti alloy. Inorg. Mater. (2014). https://doi.org/10.1134/S0020168514120188

    Article  Google Scholar 

  53. Z. Fu, W. Chen, H. Wen, Z. Chen, Effect of Co and sintering method on microstructure and mechanical behavior of a high-entropy Al07.6NiFeCrCo alloy prepared by powder metallurgy. J. Alloy. Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.04.238

    Article  Google Scholar 

  54. P. Wang, H. Cai, X. Cheng, Effect of Ni/Cr ratio on phase, microstructure and mechanical properties of NixCoCuFeCr2-x(x= 1.0, 1.2, 1.5, 1.8 mol) high entropy alloys. J. Alloy. Compd. (2016). https://doi.org/10.1016/j.jallcom.2015.11.205

    Article  Google Scholar 

  55. M. Vaidya, A. Prasad, A. Parakh, B.S. Murty, Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: novel approach to alloy synthesis using mechanical alloying. Mater. Des. (2017). https://doi.org/10.1016/j.matdes.2017.04.027

    Article  Google Scholar 

  56. S.H. Joo, H. Kato, M.H. Jang, J. Moon, E.B. Kim, S.J. Hong, H.S. Kim, Structure and properties of ultrafine-grained CoCrFeMnNi high entropy alloy produced by mechanical alloying and spark plasma sintering. J. Alloy. Compd. (2017). https://doi.org/10.1016/jjallcom.2016.12.010

    Article  Google Scholar 

  57. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction (Pearson Education, London, 1978)

    Google Scholar 

  58. V. Shivam, J. Basu, V.K. Pandey, Y. Shadangi, N.K. Mukhopadhyay, Alloying behavior, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy. Adv. Powder Technol. (2018). https://doi.org/10.1016/j.apt.2018.06.006

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Central Research Facility (CRF), IIT Kharagpur for assistance in carrying out the experimental work. TD would like to thank MHRD, Govt. of India for financial support. Partial financial grants from Alexander von Humboldt (AvH) (Friedrich Wilhelm Bessel Award), Department of Science and Technology (POWER Fellowship) to JDM and Department of Science and Technology (J.C.Bose Fellowship) to IM are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotsna Dutta Majumdar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, T., Manna, I. & Majumdar, J.D. Synthesis of Multi-component Alloys (Co20Cr20Fe20Mn20Ti20 and Co20Cr20Fe20Mn20Ti20Ni20) by Mechanical Alloying Route. High Entropy Alloys & Materials (2024). https://doi.org/10.1007/s44210-023-00025-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44210-023-00025-9

Keywords

Navigation