Skip to main content
Log in

Fatigue Behavior and Mechanisms of High-Entropy Alloys

  • Review
  • Published:
High Entropy Alloys & Materials Aims and scope Submit manuscript

Abstract

Fatigue failures of structural materials pose enormous risks to in-service structures, as well as human lives. The development of advanced durable structural materials with fatigue resistance has important social impact. The novel concept of high-entropy alloys (HEAs) has engendered considerable attention due to their exhibited unusual mechanical properties, and correspondingly opening a new road to design fatigue-resistant structural materials. The present work discusses and reviews the current findings on fatigue behavior and mechanisms of HEAs. Based on the understanding of fatigue-resistant favorable deformation mechanisms in HEAs, the perspectives from the viewpoint of materials design are provided to advance the development of fatigue-resistant HEAs, and future works are also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data reviewed in this study are included in this published article.

References

  1. S. Suresh, Fatigue of Materials, 2nd edn. (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  2. Q. Pan, H. Zhou, Q. Lu, H. Gao, L. Lu, History-independent cyclic response of nanotwinned metals. Nature 551, 214 (2017)

    Article  CAS  Google Scholar 

  3. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004)

    Article  CAS  Google Scholar 

  4. B. Cantor, I. Chang, P. Knight, A. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213–218 (2004)

    Article  Google Scholar 

  5. D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017)

    Article  CAS  Google Scholar 

  6. H.Y. Diao, R. Feng, K.A. Dahmen, P.K. Liaw, Fundamental deformation behavior in high-entropy alloys: an overview. Curr. Opin. Solid State Mater. Sci. 21(5), 252–266 (2017)

    Article  CAS  Google Scholar 

  7. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys. Prog. Mater Sci. 61, 1–93 (2014)

    Article  Google Scholar 

  8. E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys. Nat. Rev. Mater. 4(8), 515–534 (2019)

    Article  CAS  Google Scholar 

  9. O.N. Senkov, J.K. Jensen, A.L. Pilchak, D.B. Miracle, H.L. Fraser, Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr. Mater. Des. 139, 498–511 (2018)

    Article  CAS  Google Scholar 

  10. Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.-G. Nieh, Z. Lu, Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 563(7732), 546–550 (2018)

    Article  CAS  Google Scholar 

  11. T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, C.T. Liu, Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science 362(6417), 933–937 (2018)

    Article  CAS  Google Scholar 

  12. R. Feng, B. Feng, M.C. Gao, C. Zhang, J.C. Neuefeind, J.D. Poplawsky, Y. Ren, K. An, M. Widom, P.K. Liaw, Superior high-temperature strength in a supersaturated refractory high-entropy alloy. Adv. Mater. 33(48), 2102401 (2021)

    Article  CAS  Google Scholar 

  13. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61(15), 5743–5755 (2013)

    Article  CAS  Google Scholar 

  14. Z. Wu, H. Bei, G.M. Pharr, E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428–441 (2014)

    Article  CAS  Google Scholar 

  15. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227–230 (2016)

    Article  CAS  Google Scholar 

  16. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications. Science 345(6201), 1153–1158 (2014)

    Article  CAS  Google Scholar 

  17. Z. Tang, T. Yuan, C.-W. Tsai, J.-W. Yeh, C.D. Lundin, P.K. Liaw, Fatigue behavior of a wrought Al 0.5 CoCrCuFeNi two-phase high-entropy alloy. Acta Mater. 99, 247–258 (2015)

    Article  CAS  Google Scholar 

  18. M. Hemphill, T. Yuan, G. Wang, J. Yeh, C. Tsai, A. Chuang, P. Liaw, Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60(16), 5723–5734 (2012)

    Article  CAS  Google Scholar 

  19. R. Feng, Y. Rao, C. Liu, X. Xie, D. Yu, Y. Chen, M. Ghazisaeidi, T. Ungar, H. Wang, K. An, P.K. Liaw, Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy. Nat. Commun. 12(1), 3588 (2021)

    Article  CAS  Google Scholar 

  20. Y. Shi, L. Collins, R. Feng, C. Zhang, N. Balke, P.K. Liaw, B. Yang, Homogenization of AlxCoCrFeNi high-entropy alloys with improved corrosion resistance. Corros. Sci. 133, 120–131 (2018)

    Article  CAS  Google Scholar 

  21. Y. Shi, B. Yang, P. Liaw, Corrosion-resistant high-entropy alloys: a review. Metals 7(2), 43 (2017)

    Article  Google Scholar 

  22. F. Bahadur, K. Biswas, N.P. Gurao, Micro-mechanisms of microstructural damage due to low cycle fatigue in CoCuFeMnNi high entropy alloy. Int. J. Fatigue 130, 105258 (2020)

    Article  CAS  Google Scholar 

  23. Y. Tian, S. Sun, H. Lin, Z. Zhang, Fatigue behavior of CoCrFeMnNi high-entropy alloy under fully reversed cyclic deformation. J. Mater. Sci. Technol. 35(3), 334–340 (2019)

    Article  CAS  Google Scholar 

  24. K. Liu, M. Komarasamy, B. Gwalani, S. Shukla, R.S. Mishra, Fatigue behavior of ultrafine grained triplex Al0.3CoCrFeNi high entropy alloy. Scripta Mater. 158, 116–120 (2019)

    Article  CAS  Google Scholar 

  25. S. Shukla, T. Wang, S. Cotton, R.S. Mishra, Hierarchical microstructure for improved fatigue properties in a eutectic high entropy alloy. Scripta Mater. 156, 105–109 (2018)

    Article  CAS  Google Scholar 

  26. K. Liu, S.S. Nene, M. Frank, S. Sinha, R.S. Mishra, Metastability-assisted fatigue behavior in a friction stir processed dual-phase high entropy alloy. Mater. Res. Lett. 6(11), 613–619 (2018)

    Article  CAS  Google Scholar 

  27. B. Guennec, V. Kentheswaran, L. Perrière, A. Ueno, I. Guillot, J.P. Couzinié, G. Dirras, Four-point bending fatigue behavior of an equimolar BCC HfNbTaTiZr high-entropy alloy: macroscopic and microscopic viewpoints. Materialia 4, 348–360 (2018)

    Article  CAS  Google Scholar 

  28. K.V.S. Thurston, B. Gludovatz, A. Hohenwarter, G. Laplanche, E.P. George, R.O. Ritchie, Effect of temperature on the fatigue-crack growth behavior of the high-entropy alloy CrMnFeCoNi. Intermetallics 88, 65–72 (2017)

    Article  CAS  Google Scholar 

  29. T. Niendorf, T. Wegener, Z. Li, D. Raabe, Unexpected cyclic stress-strain response of dual-phase high-entropy alloys induced by partial reversibility of deformation. Scripta Mater. 143, 63–67 (2018)

    Article  CAS  Google Scholar 

  30. K.V. Thurston, B. Gludovatz, Q. Yu, G. Laplanche, E.P. George, R.O. Ritchie, Temperature and load-ratio dependent fatigue-crack growth in the CrMnFeCoNi high-entropy alloy. J. Alloys Compd. 794, 525–533 (2019)

    Article  CAS  Google Scholar 

  31. S.M. Vakili, A. Zarei-Hanzaki, A.S. Anoushe, H.R. Abedi, M.H. Mohammad-Ebrahimi, M. Jaskari, S.S. Sohn, D. Ponge, L.P. Karjalainen, Reversible dislocation movement, martensitic transformation and nano-twinning during elastic cyclic loading of a metastable high entropy alloy. Acta Mater. 185, 474–492 (2020)

    Article  CAS  Google Scholar 

  32. T.-N. Lam, S.Y. Lee, N.-T. Tsou, H.-S. Chou, B.-H. Lai, Y.-J. Chang, R. Feng, T. Kawasaki, S. Harjo, P.K. Liaw, A.-C. Yeh, M.-J. Li, R.-F. Cai, S.-C. Lo, E.W. Huang, Enhancement of fatigue resistance by overload-induced deformation twinning in a CoCrFeMnNi high-entropy alloy. Acta Mater. 201, 412–424 (2020)

    Article  CAS  Google Scholar 

  33. J. Rackwitz, Q. Yu, Y. Yang, G. Laplanche, E.P. George, A.M. Minor, R.O. Ritchie, Effects of cryogenic temperature and grain size on fatigue-crack propagation in the medium-entropy CrCoNi alloy. Acta Mater. 200, 351–365 (2020)

    Article  CAS  Google Scholar 

  34. W. Li, S. Chen, P.K. Liaw, Discovery and design of fatigue-resistant high-entropy alloys. Scripta Mater. 187, 68–75 (2020)

    Article  CAS  Google Scholar 

  35. S. Chen, X. Fan, B. Steingrimsson, Q. Xiong, W. Li, P.K. Liaw, Fatigue dataset of high-entropy alloys. Sci. Data 9(1), 381 (2022)

    Article  CAS  Google Scholar 

  36. G.E. Dieter, D.J. Bacon, Mechanical Metallurgy (McGraw-hill, New York, 1986)

    Google Scholar 

  37. Y. Estrin, A. Vinogradov, Fatigue behaviour of light alloys with ultrafine grain structure produced by severe plastic deformation: an overview. Int. J. Fatigue 32(6), 898–907 (2010)

    Article  CAS  Google Scholar 

  38. R. Liu, Y.Z. Tian, Z.J. Zhang, P. Zhang, X.H. An, Z.F. Zhang, Exploring the fatigue strength improvement of Cu-Al alloys. Acta Mater. 144, 613–626 (2018)

    Article  CAS  Google Scholar 

  39. R. Liu, Y.Z. Tian, Z.J. Zhang, P. Zhang, Z.F. Zhang, Fatigue strength plateau induced by microstructure inhomogeneity. Mater. Sci. Eng., A 702, 259–264 (2017)

    Article  CAS  Google Scholar 

  40. H. Mughrabi, H.W. Höppel, Cyclic deformation and fatigue properties of ultrafine grain size materials: current status and some criteria for improvement of the fatigue resistance. MRS Proc. 634, B2.1.1 (2011)

    Article  Google Scholar 

  41. K. Suzuki, M. Koyama, S. Hamada, K. Tsuzaki, H. Noguchi, Planar slip-driven fatigue crack initiation and propagation in an equiatomic CrMnFeCoNi high-entropy alloy. Int. J. Fatigue 133, 105418 (2020)

    Article  CAS  Google Scholar 

  42. S. Mizumachi, M. Koyama, Y. Fukushima, K. Tsuzaki, Growth behavior of a mechanically long fatigue crack in an FeCrNiMnCo high entropy alloy: a comparison with an austenitic stainless steel. ISIJ Int. 60(1), 175–181 (2020)

    Article  CAS  Google Scholar 

  43. K. Liu, S.S. Nene, M. Frank, S. Sinha, R.S. Mishra, Extremely high fatigue resistance in an ultrafine grained high entropy alloy. Appl. Mater. Today 15, 525–530 (2019)

    Article  Google Scholar 

  44. K. Liu, B. Gwalani, M. Komarasamy, S. Shukla, T. Wang, R.S. Mishra, Effect of nano-sized precipitates on the fatigue property of a lamellar structured high entropy alloy. Mater. Sci. Eng. A 760, 225–230 (2019)

    Article  CAS  Google Scholar 

  45. Y.-K. Kim, G.-S. Ham, H.S. Kim, K.-A. Lee, High-cycle fatigue and tensile deformation behaviors of coarse-grained equiatomic CoCrFeMnNi high entropy alloy and unexpected hardening behavior during cyclic loading. Intermetallics 111, 106486 (2019)

    Article  CAS  Google Scholar 

  46. K. Suzuki, M. Koyama, H. Noguchi, Small fatigue crack growth in a high entropy alloy. Procedia Struct. Integr. 13, 1065–1070 (2018)

    Article  Google Scholar 

  47. Y.O. Kuzminova, D.G. Firsov, S.A. Dagesyan, S.D. Konev, S.N. Sergeev, A.P. Zhilyaev, M. Kawasaki, I.S. Akhatov, S.A. Evlashin, Fatigue behavior of additive manufactured CrFeCoNi medium-entropy alloy. J. Alloys Compd. 863, 158609 (2021)

    Article  CAS  Google Scholar 

  48. Y.-K. Kim, M.-S. Baek, S. Yang, K.-A. Lee, In-situ formed oxide enables extraordinary high-cycle fatigue resistance in additively manufactured CoCrFeMnNi high-entropy alloy. Addit. Manuf. 38, 101832 (2021)

    CAS  Google Scholar 

  49. K.K. Sankaran, R.S. Mishra, Metallurgy and Design of Alloys with Hierarchical Microstructures (Elsevier, Amsterdam, 2017)

    Google Scholar 

  50. M. Koyama, Z. Zhang, M. Wang, D. Ponge, D. Raabe, K. Tsuzaki, H. Noguchi, C.C. Tasan, Bone-like crack resistance in hierarchical metastable nanolaminate steels. Science 355(6329), 1055–1057 (2017)

    Article  CAS  Google Scholar 

  51. Q. Pan, L. Zhang, R. Feng, Q. Lu, K. An, C. Chuang Andrew, D. Poplawsky Jonathan, K. Liaw Peter, L. Lu, Gradient cell–structured high-entropy alloy with exceptional strength and ductility. Science 374(6570), 984–989 (2021)

    Article  CAS  Google Scholar 

  52. P. Sathiyamoorthi, H.S. Kim, High-entropy alloys with heterogeneous microstructure: processing and mechanical properties. Prog. Mater. Sci. 123, 100709 (2022)

    Article  CAS  Google Scholar 

  53. I. Nikulin, T. Sawaguchi, K. Ogawa, K. Tsuzaki, Effect of γ to ε martensitic transformation on low-cycle fatigue behaviour and fatigue microstructure of Fe–15Mn–10Cr–8Ni–xSi austenitic alloys. Acta Mater. 105, 207–218 (2016)

    Article  CAS  Google Scholar 

  54. I. Nikulin, T. Sawaguchi, K. Tsuzaki, Effect of alloying composition on low-cycle fatigue properties and microstructure of Fe–30Mn–(6–x) Si–xAl TRIP/TWIP alloys. Mater. Sci. Eng. A 587, 192–200 (2013)

    Article  CAS  Google Scholar 

  55. K.-I. Sugimoto, D. Fiji, N. Yoshikawa, Fatigue strength of newly developed high-strength low alloy TRIP-aided steels with good hardenability. Procedia Eng. 2(1), 359–362 (2010)

    Article  CAS  Google Scholar 

  56. Z.G. Hu, P. Zhu, J. Meng, Fatigue properties of transformation-induced plasticity and dual-phase steels for auto-body lightweight: experiment, modeling and application. Mater. Des. 31(6), 2884–2890 (2010)

    Article  CAS  Google Scholar 

  57. T. Niendorf, C. Lotze, D. Canadinc, A. Frehn, H.J. Maier, The role of monotonic pre-deformation on the fatigue performance of a high-manganese austenitic TWIP steel. Mater. Sci. Eng. A 499(1), 518–524 (2009)

    Article  Google Scholar 

  58. C.Y. Huo, H.L. Gao, Strain-induced martensitic transformation in fatigue crack tip zone for a high strength steel. Mater. Charact. 55(1), 12–18 (2005)

    Article  CAS  Google Scholar 

  59. K.-I. Sugimouto, M. Kobayashi, S.-I. Yasuki, Cyclic deformation behavior of a transformation-induced plasticity-aided dual-phase steel. Metall. Mater. Trans. A 28(12), 2637–2644 (1997)

    Article  Google Scholar 

  60. Y. Birol, What happens to the energy input during fatigue crack propagation? Mater. Sci. Eng. A 104, 117–124 (1988)

    Article  Google Scholar 

  61. G.B. Olson, R. Chait, M. Azrin, R.A. Gagne, Fatigue Strength of Trip Steels (Army Materials And Mechanics Research Center, Watertown, 1979)

    Google Scholar 

  62. C.W. Shao, P. Zhang, R. Liu, Z.J. Zhang, J.C. Pang, Z.F. Zhang, Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: property evaluation, damage mechanisms and life prediction. Acta Mater. 103, 781–795 (2016)

    Article  CAS  Google Scholar 

  63. D. Wei, X. Li, S. Schönecker, J. Jiang, W.-M. Choi, B.-J. Lee, H.S. Kim, A. Chiba, H. Kato, Development of strong and ductile metastable face-centered cubic single-phase high-entropy alloys. Acta Mater. 181, 318 (2019)

    Article  CAS  Google Scholar 

  64. D. Wei, X. Li, J. Jiang, W. Heng, Y. Koizumi, W.-M. Choi, B.-J. Lee, H.S. Kim, H. Kato, A. Chiba, Novel Co-rich high performance twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) high-entropy alloys. Scripta Mater. 165, 39–43 (2019)

    Article  CAS  Google Scholar 

  65. Y. Deng, C. Tasan, K. Pradeep, H. Springer, A. Kostka, D. Raabe, Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 94, 124–133 (2015)

    Article  CAS  Google Scholar 

  66. P. Yu, R. Feng, J. Du, S. Shinzato, J.-P. Chou, B. Chen, Y.-C. Lo, P.K. Liaw, S. Ogata, A. Hu, Phase transformation assisted twinning in a face-centered-cubic FeCrNiCoAl0.36 high entropy alloy. Acta Mater. 181, 491–500 (2019)

    Article  CAS  Google Scholar 

  67. J. Ding, Q. Yu, M. Asta, R.O. Ritchie, Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys. Proc. Natl. Acad. Sci. 115(36), 8919–8924 (2018)

    Article  CAS  Google Scholar 

  68. S. Zhao, G.M. Stocks, Y. Zhang, Stacking fault energies of face-centered cubic concentrated solid solution alloys. Acta Mater. 134, 334–345 (2017)

    Article  CAS  Google Scholar 

  69. B. Guennec, V. Kentheswaran, L. Perrière, A. Ueno, I. Guillot, J.P. Couzinié, G. Dirras, Analysis of the fatigue crack growth mechanisms in equimolar body centered cubic HfNbTaTiZr high-entropy alloy: Discussions on its singularities and consequences on the crack propagation rate properties. Intermetallics 110, 106459 (2019)

    Article  CAS  Google Scholar 

  70. S. Chen, W. Li, L. Wang, T. Yuan, Y. Tong, K.-K. Tseng, J.-W. Yeh, Q. Xiong, Z. Wu, F. Zhang, T. Liu, K. Li, P.K. Liaw, Stress-controlled fatigue of HfNbTaTiZr high-entropy alloy and associated deformation and fracture mechanisms. J. Mater. Sci. Technol. 114, 191–205 (2022)

    Article  CAS  Google Scholar 

  71. K. Smith, A stress-strain function for the fatigue of metals. J. Mater. 5, 767–778 (1970)

    Google Scholar 

  72. G. Wang, P. Liaw, Fatigue and Fracture Behavior, Bulk Milk Glasses (Springer, New York, 2008), pp.169–203

    Google Scholar 

  73. M.Z. Ghomsheh, G. Khatibi, B. Weiss, M. Lederer, S. Schwarz, A. Steiger-Thirsfeld, M.A. Tikhonovsky, E.D. Tabachnikova, E. Schafler, High cycle fatigue deformation mechanisms of a single phase CrMnFeCoNi high entropy alloy. Mater. Sci. Eng. A 777, 139034 (2020)

    Article  CAS  Google Scholar 

  74. A.G. Wang, X.H. An, J. Gu, X.G. Wang, L.L. Li, W.L. Li, M. Song, Q.Q. Duan, Z.F. Zhang, X.Z. Liao, Effect of grain size on fatigue cracking at twin boundaries in a CoCrFeMnNi high-entropy alloy. J. Mater. Sci. Technol. 39, 1–6 (2020)

    Article  Google Scholar 

  75. S. Picak, T. Wegener, S.V. Sajadifar, C. Sobrero, J. Richter, H. Kim, T. Niendorf, I. Karaman, On the low-cycle fatigue response of CoCrNiFeMn high entropy alloy with ultra-fine grain structure. Acta Mater. 205, 116540 (2021)

    Article  CAS  Google Scholar 

  76. K. Lu, A. Chauhan, A.S. Tirunilai, J. Freudenberger, A. Kauffmann, M. Heilmaier, J. Aktaa, Deformation mechanisms of CoCrFeMnNi high-entropy alloy under low-cycle-fatigue loading. Acta Mater. 215, 117089 (2021)

    Article  CAS  Google Scholar 

  77. M.-Y. Luo, T.-N. Lam, P.-T. Wang, N.-T. Tsou, Y.-J. Chang, R. Feng, T. Kawasaki, S. Harjo, P.K. Liaw, A.-C. Yeh, S.Y. Lee, J. Jain, E.W. Huang, Grain-size-dependent microstructure effects on cyclic deformation mechanisms in CoCrFeMnNi high-entropy-alloys. Scripta Mater. 210, 114459 (2022)

    Article  CAS  Google Scholar 

  78. S.A.A. Shams, G. Kim, J.W. Won, J.N. Kim, H.S. Kim, C.S. Lee, Effect of grain size on the low-cycle fatigue behavior of carbon-containing high-entropy alloys. Mater. Sci. Eng. A 810, 140985 (2021)

    Article  CAS  Google Scholar 

  79. Z. Zhang, X. Zhai, G. Chen, X. Chen, K. Ameyama, Enhanced synergy of strength-ductility and low-cycle fatigue resistance of high-entropy alloy through harmonic structure design. Scripta Mater. 213, 114591 (2022)

    Article  CAS  Google Scholar 

  80. S.A.A. Shams, J.W. Bae, J.N. Kim, H.S. Kim, T. Lee, C.S. Lee, Origin of superior low-cycle fatigue resistance of an interstitial metastable high-entropy alloy. J. Mater. Sci. Technol. 115, 115–128 (2022)

    Article  CAS  Google Scholar 

  81. M. Heczko, V. Mazánová, C.E. Slone, M. Shih, E.P. George, M. Ghazisaeidi, J. Polák, M.J. Mills, Role of deformation twinning in fatigue of CrCoNi medium-entropy alloy at room temperature. Scripta Mater. 202, 113985 (2021)

    Article  CAS  Google Scholar 

  82. C.W. Shao, P. Zhang, R. Liu, Z.J. Zhang, J.C. Pang, Q.Q. Duan, Z.F. Zhang, A remarkable improvement of low-cycle fatigue resistance of high-Mn austenitic TWIP alloys with similar tensile properties: Importance of slip mode. Acta Mater. 118, 196–212 (2016)

    Article  CAS  Google Scholar 

  83. M. Valsan, D.H. Sastry, K.B.S. Rao, S.L. Mannan, Effect of strain rate on the high-temperature low-cycle fatigue properties of a nimonic PE-16 superalloy. Metall. Mater. Trans. A 25(1), 159–171 (1994)

    Article  Google Scholar 

  84. V. Patlan, A. Vinogradov, K. Higashi, K. Kitagawa, Overview of fatigue properties of fine grain 5056 Al-Mg alloy processed by equal-channel angular pressing. Mater. Sci. Eng. A 300(1), 171–182 (2001)

    Article  Google Scholar 

  85. H. Xu, D. Ye, L. Mei, A study of the back stress and the friction stress behaviors of Ti-6Al-4V alloy during low cycle fatigue at room temperature. Mater. Sci. Eng. A 700, 530–539 (2017)

    Article  CAS  Google Scholar 

  86. P. Guo, L. Qian, J. Meng, F. Zhang, L. Li, Low-cycle fatigue behavior of a high manganese austenitic twin-induced plasticity steel. Mater. Sci. Eng. A 584, 133–142 (2013)

    Article  CAS  Google Scholar 

  87. J. Wang, J. Chen, C. Guo, X. Xiao, H. Wang, B. Yang, Low cycle fatigue behavior of precipitation-strengthened Cu-Cr-Zr contact wires. Int. J. Fatigue 137, 105642 (2020)

    Article  CAS  Google Scholar 

  88. J. Jadav, K.V. Rajulapati, K.B.S. Rao, N.E. Prasad, R. Mythili, K. Prasad, Strain controlled isothermal low cycle fatigue life, deformation and fracture characteristics of Superni 263 superalloy. Mater. Sci. Eng. A 760, 296–315 (2019)

    Article  CAS  Google Scholar 

  89. S. Nandy, A.P. Sekhar, T. Kar, K.K. Ray, D. Das, Influence of ageing on the low cycle fatigue behaviour of an Al–Mg–Si alloy. Philos. Mag. 97(23), 1978–2003 (2017)

    Article  CAS  Google Scholar 

  90. M. Delbove, J.-B. Vogt, J. Bouquerel, T. Soreau, F. Primaux, Low cycle fatigue behaviour of a precipitation hardened Cu-Ni-Si alloy. Int. J. Fatigue 92, 313–320 (2016)

    Article  CAS  Google Scholar 

  91. B.A. Lerch, N. Jayaraman, S.D. Antolovich, A study of fatigue damage mechanisms in Waspaloy from 25 to 800°C. Mater. Sci. Eng. 66(2), 151–166 (1984)

    Article  CAS  Google Scholar 

  92. D. Fournier, A. Pineau, Low cycle fatigue behavior of inconel 718 at 298 K and 823 K. Metall. Trans. A 8(7), 1095–1105 (1977)

    Article  Google Scholar 

  93. R.L. McDaniels, L. Chen, R. Steward, P.K. Liaw, R.A. Buchanan, S. White, K. Liaw, D.L. Klarstrom, The strain-controlled fatigue behavior and modeling of Haynes® HASTELLOY® C-2000® superalloy. Mater. Sci. Eng. A 528(12), 3952–3960 (2011)

    Article  Google Scholar 

  94. S.A.A. Shams, G. Jang, J.W. Won, J.W. Bae, H. Jin, H.S. Kim, C.S. Lee, Low-cycle fatigue properties of CoCrFeMnNi high-entropy alloy compared with its conventional counterparts. Mater. Sci. Eng. A 792, 139661 (2020)

    Article  CAS  Google Scholar 

  95. G.V. Prasad-Reddy, R. Sandhya, S. Sankaran, M.D. Mathew, Low cycle fatigue behavior of 316LN stainless steel alloyed with varying nitrogen content. Part II: fatigue life and fracture behavior. Metall. Mater. Trans. A 45(11), 5057–5067 (2014)

    Article  CAS  Google Scholar 

  96. K. Lu, A. Chauhan, M. Walter, A.S. Tirunilai, M. Schneider, G. Laplanche, J. Freudenberger, A. Kauffmann, M. Heilmaier, J. Aktaa, Superior low-cycle fatigue properties of CoCrNi compared to CoCrFeMnNi. Scripta Mater. 194, 113667 (2021)

    Article  CAS  Google Scholar 

  97. K. Lu, F. Knöpfle, A. Chauhan, H.T. Jeong, D. Litvinov, M. Walter, W.J. Kim, J. Aktaa, Low-cycle fatigue behavior and deformation mechanisms of a dual-phase Al0.5CoCrFeMnNi high-entropy alloy. Int. J. Fatigue 163, 107075 (2022)

    Article  CAS  Google Scholar 

  98. R.O. Ritchie, Influence of microstructure on near-threshold fatigue-crack propagation in ultra-high strength steel. Met. Sci. 11(8–9), 368–381 (1977)

    Article  CAS  Google Scholar 

  99. P. Paris, F. Erdogan, A critical analysis of crack propagation laws (1963)

  100. M. Seifi, D. Li, Z. Yong, P.K. Liaw, J.J. Lewandowski, Fracture toughness and fatigue crack growth behavior of As-cast high-entropy alloys. JOM 67(10), 2288–2295 (2015)

    Article  CAS  Google Scholar 

  101. W. Li, X. Long, S. Huang, Q. Fang, C. Jiang, Elevated fatigue crack growth resistance of Mo alloyed CoCrFeNi high entropy alloys. Eng. Fract. Mech. 218, 106579 (2019)

    Article  Google Scholar 

  102. T. Eguchi, M. Koyama, Y. Fukushima, C.C. Tasan, K. Tsuzaki, Fatigue crack growth behavior and associated microstructure in a metastable high-entropy alloy. Procedia Struct. Integr. 13, 831–836 (2018)

    Article  Google Scholar 

  103. L.W. Tsay, Y.C. Liu, M.C. Young, D.Y. Lin, Fatigue crack growth of AISI304 stainless steel welds in air and hydrogen. Mater. Sci. Eng. A 374(1), 204–210 (2004)

    Article  Google Scholar 

  104. C. Sarrazin-Baudoux, J. Petit, C. Amzallag, Near-Threshold Fatigue Crack Propagation in Austenitic Stainless Steels. ECF14, Cracow (2002)

  105. P. Ma, L. Qian, J. Meng, S. Liu, F. Zhang, Fatigue crack growth behavior of a coarse- and a fine-grained high manganese austenitic twin-induced plasticity steel. Mater. Sci. Eng. A 605, 160–166 (2014)

    Article  CAS  Google Scholar 

  106. T. Niendorf, F. Rubitschek, H.J. Maier, J. Niendorf, H.A. Richard, A. Frehn, Fatigue crack growth: microstructure relationships in a high-manganese austenitic TWIP steel. Mater. Sci. Eng. A 527(9), 2412–2417 (2010)

    Article  Google Scholar 

  107. J.C. Newman, K. Kota, T.E. Lacy, Fatigue and crack-growth behavior in a titanium alloy under constant-amplitude and spectrum loading. Eng. Fract. Mech. 187, 211–224 (2018)

    Article  Google Scholar 

  108. B.L. Boyce, R.O. Ritchie, Effect of load ratio and maximum stress intensity on the fatigue threshold in Ti–6Al–4V. Eng. Fract. Mech. 68(2), 129–147 (2001)

    Article  Google Scholar 

  109. C.J. Gilbert, R.O. Ritchie, W.L. Johnson, Fracture toughness and fatigue-crack propagation in a Zr–Ti–Ni–Cu–Be bulk metallic glass. Appl. Phys. Lett. 71(4), 476–478 (1997)

    Article  CAS  Google Scholar 

  110. Y. Bu, Z. Li, J. Liu, H. Wang, D. Raabe, W. Yang, Nonbasal slip systems enable a strong and ductile hexagonal-close-packed high-entropy phase. Phys. Rev. Lett. 122(7), 075502 (2019)

    Article  CAS  Google Scholar 

  111. Z. Li, S. Zhao, R.O. Ritchie, M.A. Meyers, Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog. Mater Sci. 102, 296–345 (2019)

    Article  CAS  Google Scholar 

  112. W.M. Williams, M. Shabani, P.D. Jablonski, G.J. Pataky, Fatigue crack growth behavior of the quaternary 3d transition metal high entropy alloy CoCrFeNi. Int. J. Fatigue 148, 106232 (2021)

    Article  CAS  Google Scholar 

  113. O.H. Basquin, The exponential law of endurance tests. Proc. Astm. 10, 625–630 (1910)

    Google Scholar 

  114. L.F. Coffin Jr., A study of the effects of cyclic thermal stresses on a ductile metal, trans. ASME 76, 931–950 (1954)

    CAS  Google Scholar 

  115. S.S. Manson, Behavior of Materials Under Conditions of Thermal Stress (National Advisory Committee for Aeronautics, Kitty Hawk, 1954)

    Google Scholar 

  116. O. Nguyen, E. Repetto, M. Ortiz, R. Radovitzky, A cohesive model of fatigue crack growth. Int. J. Fract. 110(4), 351–369 (2001)

    Article  Google Scholar 

  117. Q. Xie, J. Lian, J.J. Sidor, F. Sun, X. Yan, C. Chen, T. Liu, W. Chen, P. Yang, K. An, Y. Wang, Crystallographic orientation and spatially resolved damage in a dispersion-hardened Al alloy. Acta Mater. 193, 138–150 (2020)

    Article  CAS  Google Scholar 

  118. D.-F. Li, R.A. Barrett, P.E. O’Donoghue, N.P. O’Dowd, S.B. Leen, A multi-scale crystal plasticity model for cyclic plasticity and low-cycle fatigue in a precipitate-strengthened steel at elevated temperature. J. Mech. Phys. Solids 101, 44–62 (2017)

    Article  CAS  Google Scholar 

  119. M.D. Sangid, H.J. Maier, H. Sehitoglu, A physically based fatigue model for prediction of crack initiation from persistent slip bands in polycrystals. Acta Mater. 59(1), 328–341 (2011)

    Article  CAS  Google Scholar 

  120. M. Anahid, M.K. Samal, S. Ghosh, Dwell fatigue crack nucleation model based on crystal plasticity finite element simulations of polycrystalline titanium alloys. J. Mech. Phys. Solids 59(10), 2157–2176 (2011)

    Article  CAS  Google Scholar 

  121. F. Bridier, D.L. McDowell, P. Villechaise, J. Mendez, Crystal plasticity modeling of slip activity in Ti–6Al–4V under high cycle fatigue loading. Int. J. Plast. 25(6), 1066–1082 (2009)

    Article  CAS  Google Scholar 

  122. F.P.E. Dunne, A.J. Wilkinson, R. Allen, Experimental and computational studies of low cycle fatigue crack nucleation in a polycrystal. Int. J. Plast 23(2), 273–295 (2007)

    Article  CAS  Google Scholar 

  123. S. Sinha, S. Ghosh, Modeling cyclic ratcheting based fatigue life of HSLA steels using crystal plasticity FEM simulations and experiments. Int. J. Fatigue 28(12), 1690–1704 (2006)

    Article  CAS  Google Scholar 

  124. E.A. Repetto, M. Ortiz, A micromechanical model of cyclic deformation and fatigue-crack nucleation in f.c.c. single crystals. Acta Mater. 45(6), 2577–2595 (1997)

    Article  CAS  Google Scholar 

  125. X. Lu, J. Zhao, C. Yu, Z. Li, Q. Kan, G. Kang, X. Zhang, Cyclic plasticity of an interstitial high-entropy alloy: experiments, crystal plasticity modeling, and simulations. J. Mech. Phys. Solids 142, 103971 (2020)

    Article  CAS  Google Scholar 

  126. Q. Han, X. Lei, S.-S. Rui, Y. Su, X. Ma, H. Cui, H. Shi, Temperature-dependent fatigue response of a Fe44Mn36Co10Cr10 high entropy alloy: a coupled in-situ electron microscopy study and crystal plasticity simulation. Int. J. Fatigue 151, 106385 (2021)

    Article  CAS  Google Scholar 

  127. L. Liu, Q. Yu, Z. Wang, J. Ell, M.X. Huang, R.O. Ritchie, Making ultrastrong steel tough by grain-boundary delamination. Science 368, eaba9413 (2020)

    Article  Google Scholar 

  128. T. Sawaguchi, I. Nikulin, K. Ogawa, K. Sekido, S. Takamori, T. Maruyama, Y. Chiba, A. Kushibe, Y. Inoue, K. Tsuzaki, Designing Fe–Mn–Si alloys with improved low-cycle fatigue lives. Scripta Mater. 99, 49–52 (2015)

    Article  CAS  Google Scholar 

  129. W. Lu, C.H. Liebscher, G. Dehm, D. Raabe, Z. Li, Bidirectional transformation enables hierarchical nanolaminate dual-phase high-entropy alloys. Adv. Mater. 30, 1804727 (2018)

    Article  Google Scholar 

  130. K. An, S. Fu, High entropy alloys: advanced synchrotron X-ray and neutron scattering studies. Reference Module in Materials Science and Materials Engineering (2020)

  131. K. An, H.D. Skorpenske, A.D. Stoica, D. Ma, X.-L. Wang, E. Cakmak, First in situ lattice strains measurements under load at VULCAN. Metall. Mater. Trans. A 42(1), 95–99 (2011)

    Article  CAS  Google Scholar 

  132. X.L. Wang, T.M. Holden, G.Q. Rennich, A.D. Stoica, P.K. Liaw, H. Choo, C.R. Hubbard, VULCAN: the engineering diffractometer at the SNS. Phys. B Condens. Matter 385–386(Part 1), 673–675 (2006)

    Article  Google Scholar 

  133. Q. Xie, Y. Chen, P. Yang, Z. Zhao, Y.D. Wang, K. An, In-situ neutron diffraction investigation on twinning/detwinning activities during tension-compression load reversal in a twinning induced plasticity steel. Scripta Mater. 150, 168–172 (2018)

    Article  CAS  Google Scholar 

  134. E.W. Huang, R.I. Barabash, Y. Wang, B. Clausen, L. Li, P.K. Liaw, G.E. Ice, Y. Ren, H. Choo, L.M. Pike, D.L. Klarstrom, Plastic behavior of a nickel-based alloy under monotonic-tension and low-cycle-fatigue loading. Int. J. Plast. 24(8), 1440–1456 (2008)

    Article  CAS  Google Scholar 

  135. W. Wu, P.K. Liaw, K. An, Unraveling cyclic deformation mechanisms of a rolled magnesium alloy using in situ neutron diffraction. Acta Mater. 85, 343–353 (2015)

    Article  CAS  Google Scholar 

  136. S. Cai, M.R. Daymond, R.A. Holt, E.C. Oliver, Evolution of internal strains in a two phase zirconium alloy during cyclic loading. Acta Mater. 59(13), 5305–5319 (2011)

    Article  CAS  Google Scholar 

  137. B. Cai, B. Liu, S. Kabra, Y. Wang, K. Yan, P.D. Lee, Y. Liu, Deformation mechanisms of Mo alloyed FeCoCrNi high entropy alloy: in situ neutron diffraction. Acta Mater. 127, 471–480 (2017)

    Article  CAS  Google Scholar 

  138. S. Fu, H. Bei, Y. Chen, T.K. Liu, D. Yu, K. An, Deformation mechanisms and work-hardening behavior of transformation-induced plasticity high entropy alloys by in -situ neutron diffraction. Mater. Res. Lett. 6(11), 620–626 (2018)

    Article  CAS  Google Scholar 

  139. M. Naeem, H. He, F. Zhang, H. Huang, S. Harjo, T. Kawasaki, B. Wang, S. Lan, Z. Wu, F. Wang, Y. Wu, Z. Lu, Z. Zhang, C.T. Liu, X.-L. Wang, Cooperative deformation in high-entropy alloys at ultralow temperatures. Sci. Adv. 6(13), eaax4002 (2020)

    Article  Google Scholar 

  140. Y. Wang, B. Liu, K. Yan, M. Wang, S. Kabra, Y.-L. Chiu, D. Dye, P.D. Lee, Y. Liu, B. Cai, Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction. Acta Mater. 154, 79–89 (2018)

    Article  CAS  Google Scholar 

  141. Y. Wu, W. Liu, X. Wang, D. Ma, A. Stoica, T. Nieh, Z. He, Z. Lu, In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy. Appl. Phys. Lett. 104(5), 051910 (2014)

    Article  Google Scholar 

  142. L. Ma, L. Wang, Z. Nie, F. Wang, Y. Xue, J. Zhou, T. Cao, Y. Wang, Y. Ren, Reversible deformation-induced martensitic transformation in Al0.6CoCrFeNi high-entropy alloy investigated by in situ synchrotron-based high-energy X-ray diffraction. Acta Mater. 128, 12–21 (2017)

    Article  Google Scholar 

  143. H. Diao, D. Ma, R. Feng, T. Liu, C. Pu, C. Zhang, W. Guo, J.D. Poplawsky, Y. Gao, P.K. Liaw, Novel NiAl-strengthened high entropy alloys with balanced tensile strength and ductility. Mater. Sci. Eng. A 742, 636–647 (2019)

    Article  CAS  Google Scholar 

  144. H. He, B. Wang, D. Ma, A.D. Stoica, Z. Wu, S. Lan, M. Naeem, X.-L. Wang, In situ neutron diffraction study of fatigue behavior of CrFeCoNiMo0.2 high entropy alloy. Intermetallics 139, 107371 (2021)

    Article  CAS  Google Scholar 

  145. T.-N. Lam, Y.-S. Chou, Y.-J. Chang, T.-R. Sui, A.-C. Yeh, S. Harjo, S.Y. Lee, J. Jain, B.-H. Lai, E.-W. Huang, Comparing cyclic tension-compression effects on CoCrFeMnNi high-entropy alloy and ni-based superalloy. Crystals 9(8), 420 (2019)

    Article  CAS  Google Scholar 

  146. S.Y. Lee, E.W. Huang, W. Wu, P.K. Liaw, A.M. Paradowska, Development of crystallographic-orientation-dependent internal strains around a fatigue-crack tip during overloading and underloading. Mater. Charact. 79, 7–14 (2013)

    Article  CAS  Google Scholar 

  147. W. Wu, S.Y. Lee, A.M. Paradowska, Y. Gao, P.K. Liaw, Twinning–detwinning behavior during fatigue-crack propagation in a wrought magnesium alloy AZ31B. Mater. Sci. Eng. A 556, 278–286 (2012)

    Article  CAS  Google Scholar 

  148. S. Seo, E.W. Huang, W. Woo, S.Y. Lee, Neutron diffraction residual stress analysis during fatigue crack growth retardation of stainless steel. Int. J. Fatigue 104, 408–415 (2017)

    Article  CAS  Google Scholar 

  149. K. Lu, A. Chauhan, D. Litvinov, J. Aktaa, Temperature-dependent cyclic deformation behavior of CoCrFeMnNi high-entropy alloy. Int. J. Fatigue 160, 106863 (2022)

    Article  CAS  Google Scholar 

  150. M. Jin, E. Hosseini, S.R. Holdsworth, M.-S. Pham, Thermally activated dependence of fatigue behaviour of CrMnFeCoNi high entropy alloy fabricated by laser powder-bed fusion. Addit. Manuf. 51, 102600 (2022)

    CAS  Google Scholar 

Download references

Acknowledgements

RF thanks for the support from Materials and Engineering Initiative at the Spallation Neutron Source (SNS) and High Flux Isotope Reactor (HFIR), at Oak Ridge National Laboratory (ORNL). PKL appreciates the support from the US National Science Foundation (DMR 1611180) and the US Army Research Office under project numbers of W911NF-13-1-0438 and W911NF-19-2-0049. This research used resources at the SNS, a US Department of Energy Office of Science User Facility operated by ORNL. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke An.

Ethics declarations

Conflict of interest

The authors did not receive support from any organization for the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, R., An, K. & Liaw, P.K. Fatigue Behavior and Mechanisms of High-Entropy Alloys. High Entropy Alloys & Materials 1, 4–24 (2023). https://doi.org/10.1007/s44210-022-00008-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44210-022-00008-2

Keywords

Navigation