1 Introduction

Fractional calculus dates back to the seventeenth century, when Leibniz and Marquis de l'Hospital began a conversation about semi-derivatives. Many well-known mathematicians were inspired by this subject to investigate modern views of the area. The theory of fractional calculus grew greatly in the late nineteenth century. Math, physics, viscoelasticity, rheology, chemistry, and statistical physics, as well as electrical and mechanical engineering, are now covered.

The application of integral inequalities in mathematical analysis has seen an exponential increase in publications. Riemann–Liouville, Caputo, Katugampola, and Caputo–Fabrizio are just a few of the integral inequalities that have been developed in recent years using a variety of fractional-order operator definitions. Researchers have obtained several versions of well-known inequalities of Hermite–Hadamard, Hardy, Opial, Ostrowski, and Grüss (see [1,2,3,4,5,6,7,8,9,10]) using these integrals.

On the other hand, Costa [11] just uncovered Jensen’s type inequality in FIVF. Costa and Roman–Flores [12, 13] looked at the characteristics of several types of inequalities in the context of FIVF and IVF. Roman–Flores et al. [14] established Gronwall inequality for IVFs. Furthermore, Chalco-Cano et al. [15, 16] employed the generalized Hukuhara derivative to demonstrate Ostrowski-type inequalities for IVFs, as well as numerical integration applications in IVF. Nikodem et al. [17] and Matkowski and Nikodem [18] proposed new versions of Jensen’s inequality for strongly convex and convex functions.

Zhao et al. [19, 20] were employed IVFs to generate Chebyshev, Jensen’s, and HH type inequalities. Zhang et al. [21] recently employed a pseudo order relation to extend Jensen’s inequalities for set-valued and fuzzy-set-valued functions and develop a novel form of Jensen’s inequalities. Budek [22] subsequently established an interval-valued fractional Riemann–Liouville HH inequality for convex IVF using an inclusion relation. For further detail, see [23,24,25,26,27] and the references therein.

Recently, Khan et al. [28] used FOR to construct a new class of convex FIVFs which is known as (\({\mathsf{h}}_{1},{\mathsf{h}}_{2}\))-convex FIVFs, as well as some new versions of the HH type inequality for (\({\mathsf{h}}_{1},{\mathsf{h}}_{2}\))-convex FIVFs that incorporates the FI Riemann integral. Khan et al. went a step further by providing new convex and extended convex FIVF classes, as well as new fractional HH type and HH type inequalities for convex FIVF [29], \(\mathsf{h}\)-convex FIVF [30], (\({\mathsf{h}}_{1},{\mathsf{h}}_{2}\))-preinvex FIVF [31], log-s-convex FIVFs in the second sense [32], harmonically convex FIVFs [33], coordinated convex FIVFs [34] and the references therein. We suggest readers to [35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58] and the references therein for more study of literature on the applications and properties of FI, as well as inequalities and extended convex fuzzy mappings.

Motivated and inspired by ongoing research work, we have introduced the new generation of harmonic functions is known as ℋ − h-convex functions using FOR in Sect. 2. In Sect. 3, we have used FI fractional operators to derive new versions of Hermite–Hadamard inequalities with the help of this class. Furthermore, we have examined the study’s special circumstances as applications. In the end, we have given conclusion and future plan.

2 Preliminaries

We will start by reviewing the fundamental notations and definitions.

The collection of all closed and bounded intervals of \({\mathbb{R}}\) is denoted and defined as

$${\mathcal{K}}_{C}=\left\{\left[{\zeta }_{*}, {\zeta }^{*}\right]:{\zeta }_{*}, {\zeta }^{*}\in {\mathbb{R}}{\text{ and }} {\zeta }_{*}\le {\zeta }^{*}\right\}.$$

The set of all positive interval is denoted by \({{\mathcal{K}}_{C}}^{+}\) and defined as

$${{\mathcal{K}}_{C}}^{+}=\left\{\left[{\zeta }_{*}, {\zeta }^{*}\right]:\left[{\zeta }_{*}, {\zeta }^{*}\right]\in {\mathcal{K}}_{C} {\text{ and }}{ \zeta }_{*}\ge 0\right\}.$$

We will now look at some of the properties of intervals using arithmetic operations. Let \(\left[{\zeta }_{*}, {\zeta }^{*}\right], \left[{\lambda }_{*}, {\lambda }^{*}\right]\in {\mathcal{K}}_{C}\) and \(\rho \in {\mathbb{R}}\), then we have

$$\left[{\zeta }_{*}, {\zeta }^{*}\right]+\left[{\lambda }_{*}, {\lambda }^{*}\right] =\left[{\zeta }_{*}+{\lambda }_{*}, {\zeta }^{*}{+\lambda }^{*}\right],$$
(1)
$$\left[{\zeta }_{*}, {\zeta }^{*}\right]\times \left[{\lambda }_{*}, {\lambda }^{*}\right]=\left[\begin{array}{c}min\left(K\right), max\left(K\right)\end{array}\right],$$
(2)

where

$$\mathrm{min}K=\mathrm{min}\left\{{\zeta }_{*}{\lambda }_{*}, {\zeta }^{*}{\lambda }_{*}, {\zeta }_{*}{\lambda }^{*}, {\zeta }^{*}{\lambda }^{*}\right\},$$

and

$$\mathrm{max}K=\mathrm{max}\left\{{\zeta }_{*}{\lambda }_{*}, {\zeta }^{*}{\lambda }_{*}, {\zeta }_{*}{\lambda }^{*}, {\zeta }^{*}{\lambda }^{*}\right\}$$
$$\rho .\left[{\zeta }_{*}, {\zeta }^{*}\right]=\left\{\begin{array}{l}\left[\rho {\zeta }_{*}, {\rho \zeta }^{*}\right] \quad {\text{ if }} \rho >0,\\ \left\{0\right\} \quad {\text{if}} \rho =0,\\ \left[\rho {\zeta }^{*}{,\rho \zeta }_{*}\right] \quad {\text{if}} \rho <0.\end{array}\right.$$
(3)

For \(\left[{\zeta }_{*}, {\zeta }^{*}\right], \left[{\lambda }_{*}, {\lambda }^{*}\right]\in {\mathcal{K}}_{C},\) the inclusion \("\subseteq "\) is defined by

$$\left[{\zeta }_{*}, {\zeta }^{*}\right]\subseteq \left[{\lambda }_{*}, {\lambda }^{*}\right], {\text{ if and only if }} {\lambda }_{*}\le {\zeta }_{*},{\zeta }^{*}\le {\lambda }^{*}.$$

Remark 2.1.

The relation \({"\le }_{I}"\) defined on \({\mathcal{K}}_{C}\) by

$$\left[{\zeta }_{*}, {\zeta }^{*}\right]{\le }_{I}\left[{\lambda }_{*}, {\lambda }^{*}\right]{\text{ if and only if }}{\zeta }_{*}{\le \lambda }_{*}, {\zeta }^{*}{\le \lambda }^{*},$$
(4)

for all \(\left[{\zeta }_{*}, {\zeta }^{*}\right], \left[{\lambda }_{*}, {\lambda }^{*}\right]\in {\mathcal{K}}_{C},\) it is an order relation, see [35].

Let \({\mathbb{R}}\) be the set of real numbers. A mapping \(\zeta :{\mathbb{R}}\to [\mathrm{0,1}]\) called the membership function distinguishes a fuzzy subset set \(\mathcal{A}\) of \({\mathbb{R}}\). This representation is found to be acceptable in this study. \({\mathbb{F}}_{0}\) also stands for the collection of all fuzzy subsets of \({\mathbb{R}}\).

Proposition 2.2.

[18] Let \(\stackrel{\sim }{\zeta },\stackrel{\sim }{\lambda }\in {\mathbb{F}}_{0}\). Then FOR \("\preccurlyeq "\) given on \({\mathbb{F}}_{0}\) by

$$\stackrel{\sim }{\zeta }\preccurlyeq \stackrel{\sim }{\lambda }{\text{ if and only if}}, {{\left[\stackrel{\sim }{\zeta }\right]}^{\varphi }\le }_{I}{\left[\stackrel{\sim }{\lambda }\right]}^{\begin{array}{c} \\ \varphi \end{array}}{\text{ for all }}\varphi \in \left(0, 1\right],$$

it is partial order relation.

We will now look at some of the properties of FIs using arithmetic operations. Let \(\stackrel{\sim }{\zeta },\stackrel{\sim }{\lambda }\in {\mathbb{F}}_{0}\) and \(\rho \in {\mathbb{R}}\), then we have

$${\left[\stackrel{\sim }{\zeta }\stackrel{\sim }{+}\stackrel{\sim }{\lambda }\right]}^{\varphi } ={\left[\stackrel{\sim }{\zeta }\right]}^{\varphi }+{\left[\stackrel{\sim }{\lambda }\right]}^{\begin{array}{c} \\ \varphi \end{array}},$$
(5)
$${\left[\stackrel{\sim }{\zeta }\stackrel{\sim }{\times }\stackrel{\sim }{\lambda }\right]}^{\varphi }={\left[\stackrel{\sim }{\zeta }\right]}^{\varphi }\times {\left[ \stackrel{\sim }{\lambda }\right]}^{\begin{array}{c} \\ \varphi \end{array}},$$
(6)
$${\left[\rho .\stackrel{\sim }{\zeta }\right]}^{\varphi } =\rho .{\left[\stackrel{\sim }{\zeta }\right]}^{\begin{array}{c} \\ \varphi \end{array}}$$
(7)

Definition 2.3.

[36] A FIV map \(\mathfrak{G}:K\subset {\mathbb{R}}\to {\mathbb{F}}_{0}\) is called FIVF. For each \(\varphi \in (0, 1],\) whose \(\varphi \)-cuts derive the following IVFs \({\mathfrak{G}}_{\varphi }:K\subset {\mathbb{R}}\to {\mathcal{K}}_{C}\) are given by \({\mathfrak{G}}_{\varphi }\left(\varpi \right)=\left[{\mathfrak{G}}_{*}\left(\varpi ,\varphi \right), {\mathfrak{G}}^{*}\left(\varpi ,\varphi \right)\right]\) for all \(\varpi \in K.\) Here, for each \(\varphi \in (0, 1],\) the end point real functions \({\mathfrak{G}}_{*}\left(.,\varphi \right), {\mathfrak{G}}^{*}\left(.,\varphi \right):K\to {\mathbb{R}}\) are called lower and upper functions of \(\mathfrak{G}\).

The following FI Riemann–Liouville fractional integral operators were introduced by Allahviranloo et al. [10]:

Definition 2.4.

Let \(\alpha >0\) and \(L\left(\left[\mu , \upsilon \right],{\mathbb{F}}_{0}\right)\) be the collection of all Lebesgue measurable FIVFs on \([\mu ,\upsilon ]\). Then, the FI left and right Riemann–Liouville fractional integral of \(\stackrel{\sim }{\mathfrak{G}}\in \) \(L\left(\left[\mu , \upsilon \right],{\mathbb{F}}_{0}\right)\) with order \(\alpha >0\) are defined by.

$${\mathcal{I}}_{{\mu }^{+}}^{\alpha } \stackrel{\sim }{\mathfrak{G}}\left(\varpi \right)=\frac{1}{\Gamma (\alpha )}{\int }_{\mu }^{\varpi }{\left(\varpi -\varsigma \right)}^{\alpha -1}\stackrel{\sim }{\mathfrak{G}}\left(\varsigma \right)d\varsigma , \left(\varpi >\mu \right),$$
(8)

and

$${\mathcal{I}}_{{\upsilon }^{-}}^{\alpha } \stackrel{\sim }{\mathfrak{G}}\left(\varpi \right)=\frac{1}{\Gamma (\alpha )}{\int }_{\varpi }^{\upsilon }{\left(\varsigma -\varpi \right)}^{\alpha -1}\stackrel{\sim }{\mathfrak{G}}\left(\varsigma \right)d\varsigma , \left(\varpi <\upsilon \right),$$
(9)

respectively, where \(\Gamma \left(\varpi \right)={\int }_{0}^{\infty }{\varsigma }^{\varpi -1}{\mu }^{-\varsigma }d\varsigma \) is the Euler gamma function. The FI left and right Riemann–Liouville fractional integral \(\varpi \) based on left and right end point functions can be defined, that is.

$${\left[{\mathcal{I}}_{{\mu }^{+}}^{\alpha } \stackrel{\sim }{\mathfrak{G}}\left(\varpi \right)\right]}^{\varphi }=\frac{1}{\Gamma \left(\alpha \right)}{\int }_{\mu }^{\varpi }{\left(\varpi -\varsigma \right)}^{\alpha -1}{\mathfrak{G}}_{\varphi }\left(\varsigma \right)d\varsigma =\frac{1}{\Gamma (\alpha )}{\int }_{\mu }^{\varpi }{\left(\varpi -\varsigma \right)}^{\alpha -1}\left[{\mathfrak{G}}_{*}\left(\varsigma , \varphi \right),{\mathfrak{G}}^{*}\left(\varsigma , \varphi \right)\right]d\varsigma , \left(\varpi >\mu \right),$$
(10)

where

$${\mathcal{I}}_{{\mu }^{+}}^{\alpha } {\mathfrak{G}}_{*}\left(\varpi , \varphi \right)=\frac{1}{\Gamma (\alpha )}{\int }_{\mu }^{\varpi }{\left(\varpi -\varsigma \right)}^{\alpha -1}{\mathfrak{G}}_{*}\left(\varsigma , \varphi \right)d\varsigma , \left(\varpi >\mu \right),$$
(11)

and

$${\mathcal{I}}_{{\mu }^{+}}^{\alpha } {\mathfrak{G}}^{*}\left(\varpi , \varphi \right)=\frac{1}{\Gamma (\alpha )}{\int }_{\mu }^{\varpi }{\left(\varpi -\varsigma \right)}^{\alpha -1}{\mathfrak{G}}^{*}\left(\varsigma , \varphi \right)d\varsigma , \left(\varpi >\mu \right),$$
(12)

Similarly, the left and right end point functions can be used to define the right Riemann–Liouville fractional integral \(\mathfrak{G}\) of \(\varpi \).

Definition 2.5.

[7] A set \(K=\left[\mu , \upsilon \right]\subset {\mathbb{R}}^{+}=\left(0,\infty \right)\) is said to be harmonically convex set, if, for all \(\varpi , \mathcal{Z}\in K, \varsigma \in \left[0, 1\right]\), we have

$$\frac{\varpi \mathcal{Z}}{\varsigma \varpi +\left(1-\varsigma \right)\mathcal{Z}}\in K.$$
(13)

Definition 2.6.

[7] The \(\mathfrak{G}:\left[\mu , \upsilon \right]\to {\mathbb{R}}^{+}\) is called harmonically convex function on \(\left[\mu , \upsilon \right]\) if

$$\mathfrak{G}\left( \frac{\varpi \mathcal{Z}}{\varsigma \varpi +\left(1-\varsigma \right)\mathcal{Z}}\right)\le \left(1-\varsigma \right)\mathfrak{G}\left(\varpi \right)+\varsigma \mathfrak{G}\left(\mathcal{Z}\right),$$
(14)

for all \(\varpi , \mathcal{Z}\in \left[\mu , \upsilon \right], \varsigma \in \left[0, 1\right],\) where \(\mathfrak{G}\left(\varpi \right)\ge 0\) for all \(\varpi \in \left[\mu , \upsilon \right].\) If (14) is reversed then, \(\mathfrak{G}\) is called harmonically concave FIVF on \(\left[\mu , \upsilon \right]\).

Definition 2.7.

[43] The positive real-valued function \(\mathfrak{G}:\left[\mu , \upsilon \right]\to {\mathbb{R}}^{+}\) is called ℋ − -convex function on \(\left[\mu , \upsilon \right]\) if

$$\mathfrak{G}\left( \frac{\varpi \mathcal{Z}}{\varsigma \varpi +\left(1-\varsigma \right)\mathcal{Z}}\right)\le \mathsf{h}\left(1-\varsigma \right)\mathfrak{G}\left(\varpi \right)+\mathsf{h}(\varsigma )\mathfrak{G}\left(\mathcal{Z}\right),$$
(15)

for all \(\varpi , \mathcal{Z}\in \left[\mu , \upsilon \right], \varsigma \in \left[0, 1\right],\) where \(\mathfrak{G}\left(\varpi \right)\ge 0\) for all \(\varpi \in \left[\mu , \upsilon \right]\) and and \(\mathsf{h}:[0, 1]\subseteq [\mu , \upsilon ]\to {\mathbb{R}}^{+}\) such that \(\mathsf{h}\not\equiv 0\). If (15) is reversed then, \(\mathfrak{G}\) is called ℋ − -concave function on \(\left[\mu , \upsilon \right]\). The set of all ℋ − -convex (ℋ − -concave) functions is denoted by

$$HSX\left(\left[\mu , \upsilon \right], {\mathbb{R}}^{+},\mathsf{h}\right)\left(HSV\left(\left[\mu , \upsilon \right], {\mathbb{R}}^{+}, \mathsf{h}\right)\right).$$

Definition 2.8.

[28] The FIVF \(\stackrel{\sim }{\mathfrak{G}}:\left[\mu , \upsilon \right]\to {\mathbb{F}}_{0}\) is called \(\mathsf{h}\)-convex FIVF on \(\left[\mu , \upsilon \right]\) if

$$\stackrel{\sim }{\mathfrak{G}}\left( \left(1-\varsigma \right)\varpi +\varsigma \mathcal{Z}\right)\preccurlyeq \mathsf{h}\left(1-\varsigma \right)\stackrel{\sim }{\mathfrak{G}}\left(\varpi \right)\stackrel{\sim }{+}\mathsf{h}\left(\varsigma \right)\stackrel{\sim }{\mathfrak{G}}\left(\mathcal{Z}\right),$$
(16)

for all \(\varpi , \mathcal{Z}\in \left[\mu , \upsilon \right], \varsigma \in \left[0, 1\right],\) where \(\mathfrak{G}\left(\varpi \right)\ge 0\) for all \(\varpi \in \left[\mu , \upsilon \right]\) and and \(\mathsf{h}:[0, 1]\subseteq [\mu , \upsilon ]\to {\mathbb{R}}^{+}\) such that \(\mathsf{h}\not\equiv 0\). If (16) is reversed then, \(\stackrel{\sim }{\mathfrak{G}}\) is called \(\mathsf{h}\)-concave FIVF on \(\left[\mu , \upsilon \right]\). The set of all \(\mathsf{h}\)-convex (\(\mathsf{h}\)-concave) FIVF is denoted by

$$FSX\left(\left[\mu , \upsilon \right], {\mathbb{R}}^{+},\mathsf{h}\right)\left(FSV\left(\left[\mu , \upsilon \right], {\mathbb{R}}^{+}, \mathsf{h}\right)\right).$$

Definition 2.9.

[34] The FIVF \(\stackrel{\sim }{\mathfrak{G}}:\left[\mu , \upsilon \right]\to {\mathbb{F}}_{0}\) is called harmonically convex FIVF on \(\left[\mu , \upsilon \right]\) if

$$\stackrel{\sim }{\mathfrak{G}}\left( \frac{\varpi \mathcal{Z}}{\varsigma \varpi +\left(1-\varsigma \right)\mathcal{Z}}\right)\preccurlyeq \left(1-\varsigma \right)\stackrel{\sim }{\mathfrak{G}}\left(\varpi \right)\stackrel{\sim }{+}\varsigma \stackrel{\sim }{\mathfrak{G}}\left(\mathcal{Z}\right),$$
(17)

for all \(\varpi , \mathcal{Z}\in \left[\mu , \upsilon \right], \varsigma \in \left[0, 1\right],\) where \(\stackrel{\sim }{\mathfrak{G}}\left(\varpi \right)\succcurlyeq \tilde{0 }\), for all \(\varpi \in \left[\mu , \upsilon \right].\) If (17) is reversed then, \(\stackrel{\sim }{\mathfrak{G}}\) is called harmonically concave FIVF on \(\left[\mu , \upsilon \right]\).

Definition 2.10.

[47] The FIVF \(\stackrel{\sim }{\mathfrak{G}}:\left[\mu , \upsilon \right]\to {\mathbb{F}}_{0}\) is called harmonically -convex (ℋ − -convex) FIVF on \(\left[\mu , \upsilon \right]\) if

$$\stackrel{\sim }{\mathfrak{G}}\left( \frac{\varpi \mathcal{Z}}{\varsigma \varpi +\left(1-\varsigma \right)\mathcal{Z}}\right)\preccurlyeq \mathsf{h}\left(1-\varsigma \right)\stackrel{\sim }{\mathfrak{G}}\left(\varpi \right)\stackrel{\sim }{+}\mathsf{h}\left(\varsigma \right)\stackrel{\sim }{\mathfrak{G}}\left(\mathcal{Z}\right),$$
(18)

for all \(\varpi , \mathcal{Z}\in \left[\mu , \upsilon \right], \varsigma \in \left[0, 1\right],\) where \(\stackrel{\sim }{\mathfrak{G}}\left(\varpi \right)\succcurlyeq \tilde{0 }\), for all \(\varpi \in \left[\mu , \upsilon \right]\) and \(\mathsf{h}:[0, 1]\subseteq [\mu , \upsilon ]\to {\mathbb{R}}^{+}\) such that \(\mathsf{h}\not\equiv 0\). If (18) is reversed then, \(\stackrel{\sim }{\mathfrak{G}}\) is called ℋ − -concave FIVF on \(\left[\mu , \upsilon \right]\). The set of all ℋ − -convex (ℋ − -concave) FIVF is denoted by

$$HFSX\left(\left[\mu , \upsilon \right], {\mathbb{F}}_{0}, \mathsf{h}\right)\left(HFSV\left(\left[\mu , \upsilon \right], {\mathbb{F}}_{0}, \mathsf{h}\right)\right).$$

Theorem 2.11.

[47] Let \(\left[\mu , \upsilon \right]\) be harmonically convex set, and let \(\stackrel{\sim }{\mathfrak{G}}:\left[\mu , \upsilon \right]\to {\mathbb{F}}_{C}\left({\mathbb{R}}\right)\) be a FIVF, whose \(\varphi \)-cuts derive the following IVFs \({\mathfrak{G}}_{\varphi }:\left[\mu , \upsilon \right]\subset {\mathbb{R}}\to {\mathcal{K}}_{C}^{+}\subset {\mathcal{K}}_{C}\) are given by

$${\mathfrak{G}}_{\varphi }\left(\varpi \right)=\left[{\mathfrak{G}}_{*}\left(\varpi ,\varphi \right), {\mathfrak{G}}^{*}\left(\varpi ,\varphi \right)\right], \forall \varpi \in \left[\mu , \upsilon \right].$$
(19)

for all \(\varpi \in \left[\mu , \upsilon \right]\), \(\varphi \in \left[0, 1\right]\). Then, \(\stackrel{\sim }{\mathfrak{G}}\in HFSX\left(\left[\mu , \upsilon \right], {\mathbb{F}}_{0}, \mathsf{h}\right),\) if and only if, for all \(\in \left[0, 1\right],\) \({\mathfrak{G}}_{*}\left(\varpi , \varphi \right)\), \({\mathfrak{G}}^{*}\left(\varpi , \varphi \right)\in HSX\left(\left[\mu , \upsilon \right], {\mathbb{R}}^{+},\mathsf{h}\right).\)

Proof.

Assume that for each \(\in \left[0, 1\right],\) \({\mathfrak{G}}_{*}\left(\varpi , \varphi \right)\), \({\mathfrak{G}}^{*}\left(\varpi , \varphi \right)\in HSX\left(\left[\mu , \upsilon \right], {\mathbb{R}}^{+},\mathsf{h}\right).\) Then from (15), we have

$${\mathfrak{G}}_{*}\left(\frac{\varpi \mathcal{Z}}{\varsigma \varpi +\left(1-\varsigma \right)\mathcal{Z}}, \varphi \right)\le \mathsf{h}\left(1-\varsigma \right){\mathfrak{G}}_{*}\left(\varpi , \varphi \right)+\mathsf{h}\left(\varsigma \right){\mathfrak{G}}_{*}\left(\mathcal{Z}, \varphi \right),$$

for all \(\varpi ,\mathcal{Z}\in \left[\mu , \upsilon \right], \varsigma \in \left[0, 1\right], \)and

$${\mathfrak{G}}^{*}\left(\frac{\varpi \mathcal{Z}}{\varsigma \varpi +\left(1-\varsigma \right)\mathcal{Z}}, \varphi \right)\le \mathsf{h}\left(1-\varsigma \right){\mathfrak{G}}^{*}\left(\varpi , \varphi \right)+\mathsf{h}\left(\varsigma \right){\mathfrak{G}}^{*}\left(\mathcal{Z}, \varphi \right),$$

for all \(\varpi ,\mathcal{Z}\in \left[\mu , \upsilon \right], \varsigma \in \left[0, 1\right].\)

Then, by (19), (5) and (6), we obtain

\({\mathfrak{G}}_{\varphi }\left(\frac{\varpi \mathcal{Z}}{\varsigma \varpi +\left(1-\varsigma \right)\mathcal{Z}}\right)=\left[{\mathfrak{G}}_{*}\left(\varsigma \varpi +\left(1-\varsigma \right)\mathcal{Z}, \varphi \right), {\mathfrak{G}}^{*}\left(\varsigma \varpi +\left(1-\varsigma \right)\mathcal{Z}, \varphi \right)\right]\),

\({\le }_{I}\mathsf{h}\left(1-\varsigma \right)\left[{\mathfrak{G}}_{*}\left(\varpi , \varphi \right), {\mathfrak{G}}^{*}\left(\varpi , \varphi \right)\right]\)

$$+\mathsf{h}\left(\varsigma \right)\left[{\mathfrak{G}}_{*}\left(\mathcal{Z}, \varphi \right), {\mathfrak{G}}^{*}\left(\mathcal{Z}, \varphi \right)\right],$$

that is

$$\stackrel{\sim }{\mathfrak{G}}\left(\frac{\varpi \mathcal{Z}}{\varsigma \varpi +\left(1-\varsigma \right)\mathcal{Z}}\right)\preccurlyeq \mathsf{h}\left(1-\varsigma \right)\stackrel{\sim }{\mathfrak{G}}\left(\varpi \right)\stackrel{\sim }{+}\mathsf{h}\left(\varsigma \right)\stackrel{\sim }{\mathfrak{G}}\left(\mathcal{Z}\right),$$

for all \(\varpi ,\mathcal{Z}\in \left[\mu , \upsilon \right], \varsigma \in \left[0, 1\right].\)

Hence,\(\stackrel{\sim }{\mathfrak{G}}\in HFSX\left(\left[\mu , \upsilon \right], {\mathbb{F}}_{0}, \mathsf{h}\right).\)

Conversely, let \(\stackrel{\sim }{\mathfrak{G}}\in HFSX\left(\left[\mu , \upsilon \right], {\mathbb{F}}_{0}, \mathsf{h}\right).\) Then for all \(\varpi ,\mathcal{Z}\in \left[\mu , \upsilon \right]\), \(\varsigma \in \left[0, 1\right],\) we have.

$$\stackrel{\sim }{\mathfrak{G}}\left(\frac{\varpi \mathcal{Z}}{\varsigma \varpi +\left(1-\varsigma \right)\mathcal{Z}}\right)\preccurlyeq \mathsf{h}\left(1-\varsigma \right)\stackrel{\sim }{\mathfrak{G}}\left(\varpi \right)\stackrel{\sim }{+}\mathsf{h}\left(\varsigma \right)\stackrel{\sim }{\mathfrak{G}}\left(\mathcal{Z}\right),$$

Therefore, from (19), for each \(\varphi \in \left[0, 1\right]\), left side of above inequality, we have

$${\mathfrak{G}}_{\varphi }\left(\frac{\varpi \mathcal{Z}}{\varsigma \varpi +\left(1-\varsigma \right)\mathcal{Z}}\right)=\left[{\mathfrak{G}}_{*}\left(\frac{\varpi \mathcal{Z}}{\varsigma \varpi +\left(1-\varsigma \right)\mathcal{Z}}, \varphi \right), {\mathfrak{G}}^{*}\left(\frac{\varpi \mathcal{Z}}{\varsigma \varpi +\left(1-\varsigma \right)\mathcal{Z}}, \varphi \right)\right].$$

Again, from (19), we obtain

\(\mathsf{h}\left(1-\varsigma \right){\mathfrak{G}}_{\varphi }\left(\varpi \right)+\mathsf{h}\left(\varsigma \right){\mathfrak{G}}_{\varphi }\left(\mathcal{Z}\right)=\mathsf{h}\left(1-\varsigma \right)\left[{\mathfrak{G}}_{*}\left(\varpi , \varphi \right), {\mathfrak{G}}^{*}\left(\varpi , \varphi \right)\right]\)

$$+\mathsf{h}\left(\varsigma \right)\left[{\mathfrak{G}}_{*}\left(\mathcal{Z}, \varphi \right), {\mathfrak{G}}^{*}\left(\mathcal{Z}, \varphi \right)\right],$$

for all \(\varpi ,\mathcal{Z}\in \left[\mu , \upsilon \right]\), \(\varsigma \in \left[0, 1\right].\) Then by ℋ − -convexity of \(\stackrel{\sim }{\mathfrak{G}}\), we have for all \(\varpi ,\mathcal{Z}\in \left[\mu , \upsilon \right]\), \(\varsigma \in \left[0, 1\right]\) such that

$${\mathfrak{G}}_{*}\left(\frac{\varpi \mathcal{Z}}{\varsigma \varpi +\left(1-\varsigma \right)\mathcal{Z}}, \varphi \right)\le \mathsf{h}\left(1-\varsigma \right){\mathfrak{G}}_{*}\left(\varpi , \varphi \right)+\mathsf{h}\left(\varsigma \right){\mathfrak{G}}_{*}\left(\mathcal{Z}, \varphi \right),$$

and

$${\mathfrak{G}}^{*}\left(\frac{\varpi \mathcal{Z}}{\varsigma \varpi +\left(1-\varsigma \right)\mathcal{Z}}, \varphi \right)\le \mathsf{h}\left(1-\varsigma \right){\mathfrak{G}}^{*}\left(\varpi , \varphi \right)+\mathsf{h}\left(\varsigma \right){\mathfrak{G}}^{*}\left(\mathcal{Z}, \varphi \right),$$

for each \(\varphi \in \left[0, 1\right].\) Hence, for each \(\varphi \in \left[0, 1\right]\), \({\mathfrak{G}}_{*}\left(\varpi , \varphi \right)\), \({\mathfrak{G}}^{*}\left(\varpi , \varphi \right)\in HSX\left(\left[\mu , \upsilon \right], {\mathbb{R}}^{+},\mathsf{h}\right)\).

Remark 2.12.

On fixing \({\mathfrak{G}}_{*}\left(\varpi ,\varphi \right)={\mathfrak{G}}^{*}\left(\varpi ,\varphi \right)\) and \(\varphi =1\), then from Definition 2.10, we obtain Definition 2.7.

On fixing \(\mathsf{h}\left(\varsigma \right)=\varsigma \), then from Definition 2.10, we obtain Definition 2.9.

Example 2.13.

We consider the FIVFs \(\stackrel{\sim }{\mathfrak{G}}:[0, 2]\to {\mathbb{F}}_{C}\left({\mathbb{R}}\right)\) defined by.

$$\stackrel{\sim }{\mathfrak{G}}\left(\varpi \right)\left(\partial \right)=\left\{\begin{array}{c}\frac{\begin{array}{l} \\ \partial \end{array}}{\sqrt{\varpi }} \partial \in \left[0, \sqrt{\varpi }\right]\\ \frac{2-\partial }{2\sqrt{\varpi }} \partial \in (\sqrt{\varpi }, 2\sqrt{\varpi }] \\ 0 {\rm otherwise},\end{array}\right.$$

Then, for each \(\varphi \in \left[0, 1\right],\) we have \({\mathfrak{G}}_{\varphi }\left(\varpi \right)=\left[\varphi \sqrt{\varpi },(2-\varphi )\sqrt{\varpi }\right]\). Since \({\mathfrak{G}}_{*}\left(\varpi , \varphi \right)\), \({\mathfrak{G}}^{*}\left(\varpi , \varphi \right)\in HSX\left(\left[\mu , \upsilon \right], {\mathbb{R}}^{+},\mathsf{h}\right)\) with \(\mathsf{h}\left(\varsigma \right)=\varsigma \), for each \(\varphi \in [0, 1]\). Hence \(\stackrel{\sim }{\mathfrak{G}}\in HFSX\left(\left[\mu , \upsilon \right], {\mathbb{F}}_{0}, \mathsf{h}\right)\).

We shall develop a relationship between \(\mathsf{h}\)-convex FIVF and \(\mathcal{H}-\mathsf{h}\)-convex FIVF in the next finding.

Theorem 2.14.

Let \(\stackrel{\sim }{\mathfrak{G}}:\left[\mu , \upsilon \right]\to {\mathbb{F}}_{C}\left({\mathbb{R}}\right)\) be a FIVF, where for all \(\varphi \in \left[0, 1\right]\), whose \(\varphi \)-cuts derive the following IVFs \({\mathfrak{G}}_{\varphi }:\left[\mu , \upsilon \right]\subset {\mathbb{R}}\to {\mathcal{K}}_{C}^{+}\subset {\mathcal{K}}_{C}\) are given by \({\mathfrak{G}}_{\varphi }\left(\varpi \right)=\left[{\mathfrak{G}}_{*}\left(\varpi ,\varphi \right), {\mathfrak{G}}^{*}\left(\varpi ,\varphi \right)\right],\) for all \(\varpi \in \left[\mu , \upsilon \right]\). Then \(\stackrel{\sim }{\mathfrak{G}}\in HFSX\left(\left[\mu , \upsilon \right], {\mathbb{F}}_{0}, \mathsf{h}\right),\) if and only if,\(\stackrel{\sim }{\mathfrak{G}}\left(\frac{1}{\varpi }\right)\in FSX\left(\left[\mu , \upsilon \right], {\mathbb{F}}_{0}, \mathsf{h}\right),.\)

Proof.

Since \(\stackrel{\sim }{\mathfrak{G}}\in HFSX\left(\left[\mu , \upsilon \right], {\mathbb{F}}_{0}, \mathsf{h}\right),\) then, for \(\varpi , \mathcal{Z}\in \left[\mu , \upsilon \right], \varsigma \in \left[0, 1\right]\), we have.

$$\stackrel{\sim }{\mathfrak{G}}\left(\frac{\varpi \mathcal{Z}}{\varsigma \varpi +\left(1-\varsigma \right)\mathcal{Z}}\right)\preccurlyeq \mathsf{h}\left(1-\varsigma \right)\stackrel{\sim }{\mathfrak{G}}\left(\varpi \right)\stackrel{\sim }{+}\mathsf{h}\left(\varsigma \right)\stackrel{\sim }{\mathfrak{G}}\left(\mathcal{Z}\right).$$

Therefore, for each \(\varphi \in [0, 1]\), we have

$$\begin{array}{c}{\mathfrak{G}}_{*}\left(\frac{\varpi \mathcal{Z}}{\varsigma \varpi +\left(1-\varsigma \right)\mathcal{Z}}, \varphi \right)\le h\left(1-\varsigma \right){\mathfrak{G}}_{*}\left(\varpi , \varphi \right)+h\left(\varsigma \right){\mathfrak{G}}_{*}\left(\mathcal{Z}, \varphi \right), \\ {\mathfrak{G}}^{*}\left(\frac{\varpi \mathcal{Z}}{\varsigma \varpi +\left(1-\varsigma \right)\mathcal{Z}}, \varphi \right)\le h\left(1-\varsigma \right){\mathfrak{G}}^{*}\left(\varpi , \varphi \right)+h\left(\varsigma \right){\mathfrak{G}}^{*}\left(\mathcal{Z}, \varphi \right).\end{array}$$
(20)

Consider \(\stackrel{\sim }{\varphi }\left(\varpi \right)=\stackrel{\sim }{\mathfrak{G}}\left(\frac{1}{\varpi }\right)\). Taking \(m=\frac{1}{\varpi }\) and \(n=\frac{1}{\mathcal{Z}}\) to replace \(\varpi \) and \(\mathcal{Z}\), respectively. Then for each \(\varphi \in [0, 1]\), applying (20)

$$\begin{array}{c}{\mathfrak{G}}_{*}\left(\frac{\frac{1}{\varpi \mathcal{Z}}}{\varsigma \frac{1}{\varpi }+\left(1-\varsigma \right)\frac{1}{\mathcal{Z}}}, \varphi \right)={\mathfrak{G}}_{*}\left(\frac{1}{\left(1-\varsigma \right)\varpi +\varsigma \mathcal{Z}}, \varphi \right) \\ ={\varphi }_{*}\left(\left(1-\varsigma \right)\varpi +\varsigma \mathcal{Z}, \varphi \right) \\ \le h\left(\varsigma \right){\mathfrak{G}}_{*}\left(\frac{1}{\mathcal{Z}}, \varphi \right)+h\left(1-\varsigma \right){\mathfrak{G}}_{*}\left(\frac{1}{\varpi }, \varphi \right)\\ =h\left(\varsigma \right){\varphi }_{*}\left(\mathcal{Z}, \varphi \right)+h\left(1-\varsigma \right){\varphi }_{*}\left(\varpi , \varphi \right), \\ {\mathfrak{G}}^{*}\left(\frac{\frac{1}{\varpi \mathcal{Z}}}{\varsigma \frac{1}{\varpi }+\left(1-\varsigma \right)\frac{1}{\mathcal{Z}}}, \varphi \right)={\mathfrak{G}}^{*}\left(\frac{1}{\left(1-\varsigma \right)\varpi +\varsigma \mathcal{Z}}, \varphi \right) \\ ={\varphi }^{*}\left(\left(1-\varsigma \right)\varpi +\varsigma \mathcal{Z}, \varphi \right) \\ \le h\left(\varsigma \right){\mathfrak{G}}^{*}\left(\frac{1}{\mathcal{Z}}, \varphi \right)+h\left(1-\varsigma \right){\mathfrak{G}}^{*}\left(\frac{1}{\varpi }, \varphi \right)\\ =h\left(\varsigma \right){\varphi }^{*}\left(\mathcal{Z}, \varphi \right)+h\left(1-\varsigma \right){\varphi }^{*}\left(\varpi , \varphi \right).\end{array}$$

It follows that

$$\left[{\mathfrak{G}}_{*}\left(\frac{\frac{1}{\varpi \mathcal{Z}}}{\varsigma \frac{1}{\varpi }+\left(1-\varsigma \right)\frac{1}{\mathcal{Z}}}, \varphi \right), {\mathfrak{G}}^{*}\left(\frac{\frac{1}{\varpi \mathcal{Z}}}{\varsigma \frac{1}{\varpi }+\left(1-\varsigma \right)\frac{1}{\mathcal{Z}}}, \varphi \right)\right]=\left[{\varphi }_{*}\left(\left(1-\varsigma \right)\varpi +\varsigma \mathcal{Z}, \varphi \right), {\varphi }^{*}\left(\left(1-\varsigma \right)\varpi +\varsigma \mathcal{Z}, \varphi \right)\right]\le \mathsf{h}\left(\varsigma \right)\left[{\varphi }_{*}\left(\mathcal{Z}, \varphi \right), {\varphi }^{*}\left(\mathcal{Z}, \varphi \right)\right]+\mathsf{h}\left(1-\varsigma \right)\left[{\varphi }_{*}\left(\varpi , \varphi \right), {\varphi }^{*}\left(\varpi , \varphi \right)\right].$$

which implies that

$${\varphi }_{\varphi }\left(\left(1-\varsigma \right)\varpi +\varsigma \mathcal{Z}\right){\le }_{I}\mathsf{h}\left(\varsigma \right){\varphi }_{\varphi }\left(\mathcal{Z}\right)+\mathsf{h}\left(1-\varsigma \right){\varphi }_{\varphi }\left(\varpi \right),$$

that is

$$\stackrel{\sim }{\varphi }\left(\left(1-\varsigma \right)\varpi +\varsigma \mathcal{Z} \right)\preccurlyeq \mathsf{h}\left(\varsigma \right)\stackrel{\sim }{\varphi }\left(\mathcal{Z}\right)\stackrel{\sim }{+}\mathsf{h}\left(1-\varsigma \right)\stackrel{\sim }{\varphi }\left(\varpi \right)$$

This concludes that \(\stackrel{\sim }{\varphi }\left(\varpi \right)\in FSX\left(\left[\mu , \upsilon \right], {\mathbb{F}}_{0}, \mathsf{h}\right)\).

Conversely, let \(\stackrel{\sim }{\varphi }\in FSX\left(\left[\mu , \upsilon \right], {\mathbb{F}}_{0}, \mathsf{h}\right).\) Then, for all \(\varpi ,\mathcal{Z}\in \left[\mu , \upsilon \right]\), \(\varsigma \in \left[0, 1\right],\) we have.

$$\stackrel{\sim }{\varphi }\left(\varsigma \varpi +\left(1-\varsigma \right)\mathcal{Z} \right)\preccurlyeq \mathsf{h}\left(\varsigma \right)\stackrel{\sim }{\varphi }\left(\varpi \right)\stackrel{\sim }{+}\mathsf{h}\left(1-\varsigma \right)\stackrel{\sim }{\varphi }\left(\mathcal{Z}\right),$$

Using same steps as above, for each \(\varphi \in [0, 1]\), we have

$$\begin{array}{c}{\varphi }_{*}\left(\varsigma \frac{1}{\varpi }+\left(1-\varsigma \right)\frac{1}{\mathcal{Z}}, \varphi \right) \\ ={\mathfrak{G}}_{*}\left(\frac{1}{\varsigma \frac{1}{\varpi }+\left(1-\varsigma \right)\frac{1}{\mathcal{Z}}}, \varphi \right)={\mathfrak{G}}_{*}\left(\frac{\varpi \mathcal{Z}}{\left(1-\varsigma \right)\varpi +\varsigma \mathcal{Z}}, \varphi \right)\\ \le h\left(\varsigma \right){\varphi }_{*}\left(\frac{1}{\varpi }, \varphi \right)+h\left(1-\varsigma \right){\varphi }_{*}\left(\frac{1}{\mathcal{Z}}, \varphi \right)\\ =h\left(\varsigma \right){\mathfrak{G}}_{*}\left(\varpi , \varphi \right)+h\left(1-\varsigma \right){\mathfrak{G}}_{*}\left(\mathcal{Z}, \varphi \right) \\ {\varphi }^{*}\left(\varsigma \frac{1}{\varpi }+\left(1-\varsigma \right)\frac{1}{\mathcal{Z}}, \varphi \right) \\ ={\mathfrak{G}}_{*}\left(\frac{1}{\varsigma \frac{1}{\varpi }+\left(1-\varsigma \right)\frac{1}{\mathcal{Z}}}, \varphi \right)={\mathfrak{G}}_{*}\left(\frac{\varpi \mathcal{Z}}{\left(1-\varsigma \right)\varpi +\varsigma \mathcal{Z}}, \varphi \right)\\ \le h\left(\varsigma \right){\varphi }^{*}\left(\frac{1}{\varpi }, \varphi \right)+h\left(1-\varsigma \right){\varphi }^{*}\left(\frac{1}{\mathcal{Z}}, \varphi \right)\\ =h\left(\varsigma \right){\mathfrak{G}}_{*}\left(\varpi , \varphi \right)+h\left(1-\varsigma \right){\mathfrak{G}}_{*}\left(\mathcal{Z}, \varphi \right).\end{array}$$

It follows that.

$${\mathfrak{G}}_{\varphi }\left(\frac{\varpi \mathcal{Z}}{\varsigma \varpi +\left(1-\varsigma \right)\mathcal{Z}}\right){\le }_{I}\mathsf{h}\left(1-\varsigma \right){\mathfrak{G}}_{\varphi }\left(\varpi \right)+\mathsf{h}\left(\varsigma \right){\mathfrak{G}}_{\varphi }\left(\mathcal{Z}\right),$$

that is

$$\stackrel{\sim }{\mathfrak{G}}\left(\frac{\varpi \mathcal{Z}}{\varsigma \varpi +\left(1-\varsigma \right)\mathcal{Z}}\right)\preccurlyeq \mathsf{h}\left(1-\varsigma \right)\stackrel{\sim }{\mathfrak{G}}\left(\varpi \right)\stackrel{\sim }{+}\mathsf{h}\left(\varsigma \right)\stackrel{\sim }{\mathfrak{G}}\left(\mathcal{Z}\right),$$

the proof the theorem has been completed.

Remark 2.15.

If \(\mathsf{h}\left(\varsigma \right)=\varsigma \), and \({\mathfrak{G}}_{*}\left(\varpi ,\varphi \right)={\mathfrak{G}}^{*}\left(\varpi ,\varphi \right)\) with \(\varphi =1\), then from Theorem 2.14, we obtain Lemma 2.1 of [9].

3 Hermite–Hadamard Inequalities for Harmonically \(\mathsf{h}\)-Convex Fuzzy-Interval-Valued Functions

We shall prove two forms of inequalities in this section. The first is HH and its variant forms, while the second is HH Fejér inequalities for ℋ − -convex FIVFs with FIVFs as integrands. In the following, \(L\left(\left[\mu , \upsilon \right],{\mathbb{F}}_{0}\right)\) denotes the family of Lebesgue measureable FIVFs.

Theorem 3.1.

Let \(\stackrel{\sim }{\mathfrak{G}}\in HFSX\left(\left[\mu , \upsilon \right], {\mathbb{F}}_{0}, \mathsf{h}\right),\) whose \(\varphi \)-cuts derive the following IVFs \({\mathfrak{G}}_{\varphi }:\left[\mu , \upsilon \right]\subset {\mathbb{R}}\to {\mathcal{K}}_{C}^{+}\) are given by \({\mathfrak{G}}_{\varphi }\left(\varpi \right)=\left[{\mathfrak{G}}_{*}\left(\varpi ,\varphi \right), {\mathfrak{G}}^{*}\left(\varpi ,\varphi \right)\right]\) for all \(\varpi \in \left[\mu , \upsilon \right]\), \(\varphi \in \left[0, 1\right]\). If \(\stackrel{\sim }{\mathfrak{G}}\in L\left(\left[\mu , \upsilon \right],{\mathbb{F}}_{0}\right)\), then.

$$\frac{1}{\alpha \mathsf{h}\left(\frac{1}{2}\right)}\stackrel{\sim }{\mathfrak{G}}\left(\frac{2\mu \upsilon }{\mu +\upsilon }\right)\preccurlyeq \Gamma \left(\alpha \right){ \left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[{\mathcal{I}}_{{\frac{1}{\mu }}^{-}}^{\alpha }\left(\stackrel{\sim }{\mathfrak{G}}\mathrm{o}\psi \right)\left(\frac{1}{\upsilon }\right)\stackrel{\sim }{+}{\mathcal{I}}_{{\frac{1}{\upsilon }}^{+}}^{\alpha } \left(\stackrel{\sim }{\mathfrak{G}}\mathrm{o}\psi \right)\left(\frac{1}{\mu }\right)\right]\preccurlyeq \left[\stackrel{\sim }{\mathfrak{G}}\left(\mu \right)\stackrel{\sim }{+}\stackrel{\sim }{\mathfrak{G}}\left(\upsilon \right)\right]{\int }_{0}^{1}{\varsigma }^{\alpha -1}\left[\mathsf{h}\left(\varsigma \right)+\mathsf{h}\left(1-\varsigma \right)\right]d\varsigma .$$
(21)

If \(\stackrel{\sim }{\mathfrak{G}}(\varpi )\) is concave FIVF then

$$\frac{1}{\alpha \mathsf{h}\left(\frac{1}{2}\right)}\stackrel{\sim }{\mathfrak{G}}\left(\frac{2\mu \upsilon }{\mu +\upsilon }\right)\succcurlyeq \Gamma \left(\alpha \right){ \left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[{\mathcal{I}}_{{\frac{1}{\mu }}^{-}}^{\alpha }\left(\stackrel{\sim }{\mathfrak{G}}\mathrm{o}\psi \right)\left(\frac{1}{\upsilon }\right)\stackrel{\sim }{+}{\mathcal{I}}_{{\frac{1}{\upsilon }}^{+}}^{\alpha } \left(\stackrel{\sim }{\mathfrak{G}}\mathrm{o}\psi \right)\left(\frac{1}{\mu }\right)\right]\succcurlyeq \left[\stackrel{\sim }{\mathfrak{G}}\left(\mu \right)\stackrel{\sim }{+}\stackrel{\sim }{\mathfrak{G}}\left(\upsilon \right)\right]{\int }_{0}^{1}{\varsigma }^{\alpha -1}\left[\mathsf{h}\left(\varsigma \right)+\mathsf{h}\left(1-\varsigma \right)\right]d\varsigma .$$
(22)

where \(\psi \left(\varpi \right)=\frac{1}{\varpi }\).

Proof.

Let \(\stackrel{\sim }{\mathfrak{G}}\in HFSX\left(\left[\mu , \upsilon \right], {\mathbb{F}}_{0}, \mathsf{h}\right),\). Then, by hypothesis, we have.

$$\frac{1}{\mathsf{h}\left(\frac{1}{2}\right)}\stackrel{\sim }{\mathfrak{G}}\left(\frac{2\mu \upsilon }{\mu +\upsilon }\right)\preccurlyeq \stackrel{\sim }{\mathfrak{G}}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right)\stackrel{\sim }{+}\stackrel{\sim }{\mathfrak{G}}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }\right).$$

Therefore, for each \(\varphi \in [0, 1]\), we have

$$\begin{array}{c}\frac{1}{\mathsf{h}\left(\frac{1}{2}\right)}{\mathfrak{G}}_{*}\left(\frac{2\mu \upsilon }{\mu +\upsilon }, \varphi \right)\le {\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)+{\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right), \\ \frac{1}{\mathsf{h}\left(\frac{1}{2}\right)}{\mathfrak{G}}^{*}\left(\frac{2\mu \upsilon }{\mu +\upsilon }, \varphi \right)\le {\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)+{\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon },\varphi \right).\end{array}$$

Consider \(\stackrel{\sim }{\varphi }\left(\varpi \right)=\stackrel{\sim }{\mathfrak{G}}\left(\frac{1}{\varpi }\right).\) By Theorem 2.14, we have \(\stackrel{\sim }{\varphi }\left(\varpi \right)\in FSX\left(\left[\mu , \upsilon \right], {\mathbb{F}}_{0}, \mathsf{h}\right),\) then for each \(\varphi \in [0, 1]\), above inequality, we have

$$\begin{array}{c}\frac{1}{\mathsf{h}\left(\frac{1}{2}\right)}{\varphi }_{*}\left(\frac{\mu +\upsilon }{2\mu \upsilon }, \varphi \right)\le {\varphi }_{*}\left(\frac{\varsigma \mu +\left(1-\varsigma \right)\upsilon }{\mu \upsilon }, \varphi \right)+{\varphi }_{*}\left(\frac{\left(1-\varsigma \right)\mu +\varsigma \upsilon }{\mu \upsilon }, \varphi \right), \\ \frac{1}{\mathsf{h}\left(\frac{1}{2}\right)}{\varphi }^{*}\left(\frac{\mu +\upsilon }{2\mu \upsilon }, \varphi \right)\le {\varphi }^{*}\left(\frac{\varsigma \mu +\left(1-\varsigma \right)\upsilon }{\mu \upsilon }, \varphi \right)+{\varphi }^{*}\left(\frac{\left(1-\varsigma \right)\mu +\varsigma \upsilon }{\mu \upsilon },\varphi \right).\end{array}$$

Multiplying both sides by \({\varsigma }^{\alpha -1}\) and integrating the obtained result with respect to \(\varsigma \) over \((\mathrm{0,1})\), we have

$$\begin{array}{l}\frac{1}{\alpha \mathsf{h}\left(\frac{1}{2}\right)}{\int }_{0}^{1}{\varsigma }^{\alpha -1}{\varphi }_{*}\left(\frac{\mu +\upsilon }{2\mu \upsilon }, \varphi \right)d\varsigma \\ \le {\int }_{0}^{1}{\varsigma }^{\alpha -1}{\varphi }_{*}\left(\frac{\varsigma \mu +\left(1-\varsigma \right)\upsilon }{\mu \upsilon },\varphi \right)d\varsigma \\ +{\int }_{0}^{1}{\varsigma }^{\alpha -1}{\varphi }_{*}\left(\frac{\left(1-\varsigma \right)\mu +\varsigma \upsilon }{\mu \upsilon }, \varphi \right)d\varsigma , \\ \frac{1}{\alpha \mathsf{h}\left(\frac{1}{2}\right)}{\int }_{0}^{1}{\varsigma }^{\alpha -1}{\varphi }^{*}\left(\frac{\mu +\upsilon }{2\mu \upsilon },\varphi \right)d\varsigma \\ \le {\int }_{0}^{1}{\varsigma }^{\alpha -1}{\varphi }^{*}\left(\frac{\varsigma \mu +\left(1-\varsigma \right)\upsilon }{\mu \upsilon }, \varphi \right)d\varsigma \\ +{\int }_{0}^{1}{\varsigma }^{\alpha -1}{\varphi }^{*}\left(\frac{\left(1-\varsigma \right)\mu +\varsigma \upsilon }{\mu \upsilon },\varphi \right)d\varsigma .\end{array}$$

Let \(\varpi =\frac{\left(1-\varsigma \right)\mu +\varsigma \upsilon }{\mu \upsilon }\) and \(\mathcal{Z}=\frac{\varsigma \mu +\left(1-\varsigma \right)\upsilon }{\mu \upsilon }.\) Then, we have

\(\begin{array}{c}\frac{1}{\alpha \mathsf{h}\left(\frac{1}{2}\right)}{\varphi }_{*}\left(\frac{\mu +\upsilon }{2\mu \upsilon }, \varphi \right) \le {\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha } \underset{\frac{1}{\upsilon }}{\overset{\frac{1}{\mu }}{\int }}{\left(\frac{1}{\mu }-\mathcal{Z}\right)}^{\alpha -1}{\varphi }_{*}\left(\mathcal{Z},\varphi \right)dz\\ +{\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\underset{\frac{1}{\upsilon }}{\overset{\frac{1}{\mu }}{\int }}{(\varpi -\frac{1}{\upsilon })}^{\alpha -1}{\varphi }_{*}(\varpi ,\varphi )d\varpi \\ \frac{1}{\alpha \mathsf{h}\left(\frac{1}{2}\right)}{\varphi }_{*}\left(\frac{\mu +\upsilon }{2\mu \upsilon }, \varphi \right)\le {\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha } \underset{\frac{1}{\upsilon }}{\overset{\frac{1}{\mu }}{\int }}{\left(\frac{1}{\mu }-\mathcal{Z}\right)}^{\alpha -1}{\varphi }^{*}\left(\mathcal{Z},\varphi \right)dz\\ +{\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\underset{\frac{1}{\upsilon }}{\overset{\frac{1}{\mu }}{\int }}{(\varpi -\frac{1}{\upsilon })}^{\alpha -1}{\varphi }^{*}\left(\varpi ,\varphi \right)d\varpi ,\end{array}\)

$$\begin{array}{c}=\Gamma \left(\alpha \right){\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[{\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha } {\varphi }_{*}\left(\frac{1}{\upsilon }, \varphi \right)+{\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } {\varphi }_{*}\left(\frac{1}{\mu }, \varphi \right)\right] \\ =\Gamma \left(\alpha \right){\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[{\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha } {\varphi }^{*}\left(\frac{1}{\upsilon }, \varphi \right)+{\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } {\varphi }^{*}\left(\frac{1}{\mu }, \varphi \right)\right].\end{array}$$

It follows that

$$\frac{1}{\alpha \mathsf{h}\left(\frac{1}{2}\right)}\left[{\varphi }_{*}\left(\frac{\mu +\upsilon }{2\mu \upsilon }, \varphi \right), {\varphi }^{*}\left(\frac{\mu +\upsilon }{2\mu \upsilon }, \varphi \right)\right]{\le }_{I}\Gamma \left(\alpha +1\right){\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[{\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha } {\varphi }_{*}\left(\frac{1}{\upsilon }, \varphi \right)+ {\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } {\varphi }_{*}\left(\frac{1}{\mu }, \varphi \right), {\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha } {\varphi }^{*}\left(\frac{1}{\upsilon }, \varphi \right)+{\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } {\varphi }^{*}\left(\frac{1}{\mu }, \varphi \right)\right].$$

That is

$$\frac{1}{\alpha \mathsf{h}\left(\frac{1}{2}\right)} \stackrel{\sim }{\varphi }\left(\frac{\mu +\upsilon }{2\mu \upsilon }\right)\preccurlyeq \Gamma \left(\alpha +1\right){\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[{\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha } \stackrel{\sim }{\varphi }\left(\frac{1}{\upsilon }\right)\stackrel{\sim }{+}{\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } \stackrel{\sim }{\varphi }\left(\frac{1}{\mu }\right)\right].$$
(23)

In a similar way as above, we have

$$\Gamma \left(\alpha \right){\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[{\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha } \stackrel{\sim }{\varphi }\left(\frac{1}{\upsilon }\right)\stackrel{\sim }{+}{\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } \stackrel{\sim }{\varphi }\left(\frac{1}{\mu }\right)\right]\preccurlyeq \left[\stackrel{\sim }{\varphi }\left(\frac{1}{\mu }\right)\stackrel{\sim }{+}\stackrel{\sim }{\varphi }\left(\frac{1}{\upsilon }\right)\right]{\int }_{0}^{1}{\varsigma }^{\alpha -1}\left[\mathsf{h}\left(\varsigma \right)+\mathsf{h}\left(1-\varsigma \right)\right].$$
(24)

Combining (23) and (24), we have

$$\frac{1}{\alpha \mathsf{h}\left(\frac{1}{2}\right)}\stackrel{\sim }{\varphi }\left(\frac{\mu +\upsilon }{2\mu \upsilon }\right)\preccurlyeq \Gamma \left(\alpha \right){ \left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[{\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha } \stackrel{\sim }{\varphi }\left(\frac{1}{\upsilon }\right)\stackrel{\sim }{+}{\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } \stackrel{\sim }{\varphi }\left(\frac{1}{\mu }\right)\right]\preccurlyeq \left[\stackrel{\sim }{\varphi }\left(\frac{1}{\mu }\right)\stackrel{\sim }{+}\stackrel{\sim }{\varphi }\left(\frac{1}{\upsilon }\right)\right]{\int }_{0}^{1}{\varsigma }^{\alpha -1}\left[\mathsf{h}\left(\varsigma \right)+\mathsf{h}\left(1-\varsigma \right)\right]d\varsigma ,$$

that is

$$\frac{1}{\alpha \mathsf{h}\left(\frac{1}{2}\right)}\stackrel{\sim }{\mathfrak{G}}\left(\frac{2\mu \upsilon }{\mu +\upsilon }\right)\preccurlyeq \Gamma \left(\alpha \right){ \left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[{\mathcal{I}}_{{\frac{1}{\mu }}^{-}}^{\alpha }\left(\stackrel{\sim }{\mathfrak{G}}\mathrm{o}\psi \right)\left(\frac{1}{\upsilon }\right)\stackrel{\sim }{+}{\mathcal{I}}_{{\frac{1}{\upsilon }}^{+}}^{\alpha } \left(\stackrel{\sim }{\mathfrak{G}}\mathrm{o}\psi \right)\left(\frac{1}{\mu }\right)\right]\preccurlyeq \left[\stackrel{\sim }{\mathfrak{G}}\left(\mu \right)\stackrel{\sim }{+}\stackrel{\sim }{\mathfrak{G}}\left(\upsilon \right)\right]{\int }_{0}^{1}{\varsigma }^{\alpha -1}\left[\mathsf{h}\left(\varsigma \right)+\mathsf{h}\left(1-\varsigma \right)\right]d\varsigma .$$

Hence, the required result.

Remark 3.2.

Followings results can be obtained through inequality (21):

On fixing \(\mathsf{h}\left(\varsigma \right)=\varsigma \), the following HH inequality is obtained, see [34];

$$\stackrel{\sim }{\mathfrak{G}}\left(\frac{2\mu \upsilon }{\mu +\upsilon }\right)\preccurlyeq \frac{\Gamma \left(\alpha +1\right)}{{2\left(\upsilon -\mu \right)}^{\alpha }}\left[{\mathcal{I}}_{{\frac{1}{\mu }}^{-}}^{\alpha }\left(\stackrel{\sim }{\mathfrak{G}}\mathrm{o}\psi \right)\left(\frac{1}{\upsilon }\right)\stackrel{\sim }{+}{\mathcal{I}}_{{\frac{1}{\upsilon }}^{+}}^{\alpha } \left(\stackrel{\sim }{\mathfrak{G}}\mathrm{o}\psi \right)\left(\frac{1}{\mu }\right)\right]\preccurlyeq \frac{\stackrel{\sim }{\mathfrak{G}}\left(\mu \right)\stackrel{\sim }{+}\stackrel{\sim }{\mathfrak{G}}\left(\upsilon \right)}{2}.$$

On fixing \(\mathsf{h}\left(\varsigma \right)=\varsigma \) and \(\alpha =1\), the following HH inequality is obtained, see [34];

$$\stackrel{\sim }{\mathfrak{G}}\left(\frac{2\mu \upsilon }{\mu +\upsilon }\right)\preccurlyeq \frac{\begin{array}{c} \\ \mu \upsilon \end{array}}{\upsilon -\mu } {\int }_{\mu }^{\upsilon }\frac{\stackrel{\sim }{\mathfrak{G}}\left(\varpi \right)}{{\varpi }^{2}}d\varpi \preccurlyeq \frac{\begin{array}{c} \\ \stackrel{\sim }{\mathfrak{G}}\left(\mu \right) \stackrel{\sim }{+} \stackrel{\sim }{\mathfrak{G}}\left(\upsilon \right)\end{array}}{2}.$$
(25)

On fixing \(\mathsf{h}\left(\varsigma \right)=\varsigma \) and \({\mathfrak{G}}_{*}\left(\varpi ,\varphi \right)={\mathfrak{G}}^{*}\left(\varpi ,\varphi \right)\) with \(\varphi =1\) the following HH inequality is obtained, see [9]:

$$\mathfrak{G}\left(\frac{2\mu \upsilon }{\mu +\upsilon }\right)\le \frac{\Gamma \left(\alpha +1\right)}{{2\left(\upsilon -\mu \right)}^{\alpha }}\left[{\mathcal{I}}_{{\frac{1}{\mu }}^{-}}^{\alpha }\left(\mathfrak{G}\mathrm{o}\psi \right)\left(\frac{1}{\upsilon }\right)+{\mathcal{I}}_{{\frac{1}{\upsilon }}^{+}}^{\alpha } \left(\mathfrak{G}\mathrm{o}\psi \right)\left(\frac{1}{\mu }\right)\right]\le \frac{\mathfrak{G}\left(\mu \right)+\mathfrak{G}\left(\upsilon \right)}{2}.$$
(26)

On fixing \(\mathsf{h}\left(\varsigma \right)=\varsigma \) and \({\mathfrak{G}}_{*}\left(\varpi ,\varphi \right)={\mathfrak{G}}^{*}\left(\varpi ,\varphi \right)\) with \(\varphi =1\) and \(\alpha =1\), the following HH inequality is obtained, see [7].

$$\mathfrak{G}\left(\frac{2\mu \upsilon }{\mu +\upsilon }\right)\le \frac{\mu \upsilon }{\upsilon -\mu } {\int }_{\mu }^{\upsilon }\frac{\mathfrak{G}\left(\varpi \right)}{{\varpi }^{2}}d\varpi \le \frac{\mathfrak{G}\left(\mu \right) + \mathfrak{G}\left(\upsilon \right)}{2}.$$
(27)

For the product of ℋ − -convex FIVFs, we now have some HH inequalities. These inequalities are modifications of previously published inequalities [34, 38, 43].

Theorem 3.3.

Let \(\stackrel{\sim }{\mathfrak{G}}\in HFSX\left(\left[\mu , \upsilon \right], {\mathbb{F}}_{0}, {\mathsf{h}}_{1}\right)\) and \(\stackrel{\sim }{\mathcal{P}}\in HFSX\left(\left[\mu , \upsilon \right], {\mathbb{F}}_{0}, {\mathsf{h}}_{2}\right)\), whose \(\varphi \)-cuts constitute the following IVFs \({\mathfrak{G}}_{\varphi }, {\mathcal{P}}_{\varphi }:\left[\mu , \upsilon \right]\subset {\mathbb{R}}\to {\mathcal{K}}_{C}^{+}\) are defined by \({\mathfrak{G}}_{\varphi }\left(\varpi \right)=\left[{\mathfrak{G}}_{*}\left(\varpi ,\varphi \right), {\mathfrak{G}}^{*}\left(\varpi ,\varphi \right)\right]\) and \({\mathcal{P}}_{\varphi }\left(\varpi \right)=\left[{\mathcal{P}}_{*}\left(\varpi ,\varphi \right), {\mathcal{P}}^{*}\left(\varpi ,\varphi \right)\right]\) for all \(\varpi \in \left[\mu , \upsilon \right]\), \(\varphi \in \left[0, 1\right]\), respectively. If \(\stackrel{\sim }{\mathfrak{G}}\stackrel{\sim }{\times }\stackrel{\sim }{\mathcal{P}}\in L\left(\left[\mu , \upsilon \right],{\mathbb{F}}_{0}\right)\), then.

\(\Gamma \left(\alpha \right){\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[\begin{array}{c}{\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } \stackrel{\sim }{\mathfrak{G}}o\psi \left(\frac{1}{\mu }\right)\stackrel{\sim }{\times }\stackrel{\sim }{\mathcal{P}}o\psi \left(\frac{1}{\mu }\right)\\ +{\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha }\stackrel{\sim }{\mathfrak{G}}o\psi \left(\frac{1}{\upsilon }\right)\stackrel{\sim }{\times }\stackrel{\sim }{\mathcal{P}}o\psi \left(\frac{1}{\upsilon }\right)\end{array}\right]\)

\(\preccurlyeq \tilde{M }\left(\mu ,\upsilon \right){\int }_{0}^{1}\left[{\varsigma }^{\alpha -1}+{\left(1-\varsigma \right)}^{\alpha -1}\right]{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)d\varsigma \)

$$+\tilde{N }\left(\mu ,\upsilon \right){\int }_{0}^{1}\left[{\varsigma }^{\alpha -1}+{\left(1-\varsigma \right)}^{\alpha -1}\right]{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)d\varsigma ,$$

where \(\tilde{M }\left(\mu ,\upsilon \right)=\stackrel{\sim }{\mathfrak{G}}\left(\mu \right)\stackrel{\sim }{\times }\stackrel{\sim }{\mathcal{P}}\left(\mu \right) \stackrel{\sim }{+} \stackrel{\sim }{\mathfrak{G}}\left(\upsilon \right)\stackrel{\sim }{\times }\stackrel{\sim }{\mathcal{P}}\left(\upsilon \right),\) \(\tilde{N }\left(\mu ,\upsilon \right)=\stackrel{\sim }{\mathfrak{G}}\left(\mu \right)\stackrel{\sim }{\times }\stackrel{\sim }{\mathcal{P}}\left(\upsilon \right) \stackrel{\sim }{+} \stackrel{\sim }{\mathfrak{G}}\left(\upsilon \right)\stackrel{\sim }{\times }\stackrel{\sim }{\mathcal{P}}\left(\mu \right),\) and \({M}_{\varphi }\left(\mu ,\upsilon \right)=\left[{M}_{*}\left(\left(\mu ,\upsilon \right), \varphi \right), {M}^{*}\left(\left(\mu ,\upsilon \right), \varphi \right)\right]\) and \({N}_{\varphi }\left(\mu ,\upsilon \right)=\left[{N}_{*}\left(\left(\mu ,\upsilon \right), \varphi \right), {N}^{*}\left(\left(\mu ,\upsilon \right), \varphi \right)\right].\)

Proof.

Since \(\stackrel{\sim }{\mathfrak{G}}, \stackrel{\sim }{\mathcal{P}}\) are \(\mathcal{H}-{\mathsf{h}}_{1}\) and \(\mathcal{H}-{\mathsf{h}}_{2}\)-convex FIVFs then, for each \(\varphi \in \left[0, 1\right],\) we have

$$\begin{array}{c}\\ {\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\le {\mathsf{h}}_{1}\left(1-\varsigma \right){\mathfrak{G}}_{*}\left(\mu ,\varphi \right)+{\mathsf{h}}_{1}\left(\varsigma \right){\mathfrak{G}}_{*}\left(\upsilon , \varphi \right), \\ {\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\le {\mathsf{h}}_{1}\left(1-\varsigma \right){\mathfrak{G}}^{*}\left(\mu ,\varphi \right)+{\mathsf{h}}_{1}\left(\varsigma \right){\mathfrak{G}}^{*}\left(\upsilon , \varphi \right), \\ .\end{array}$$

and

$$\begin{array}{c}\\ {\mathcal{P}}_{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\le {\mathsf{h}}_{2}\left(1-\varsigma \right){\mathcal{P}}_{*}\left(\mu ,\varphi \right)+{\mathsf{h}}_{2}\left(\varsigma \right){\mathcal{P}}_{*}\left(\upsilon , \varphi \right), \\ {\mathcal{P}}^{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\le {\mathsf{h}}_{2}\left(1-\varsigma \right){\mathcal{P}}^{*}\left(\mu ,\varphi \right)+{\mathsf{h}}_{2}\left(\varsigma \right){\mathcal{P}}^{*}\left(\upsilon , \varphi \right).\end{array}$$

From the definition of ℋ − -convex FIVFs, it follows that \(\tilde{0 }\preccurlyeq \stackrel{\sim }{\mathfrak{G}}\left(\varpi \right)\) and \(\tilde{0 }\preccurlyeq \stackrel{\sim }{\mathcal{P}}\left(\varpi \right)\), so

$$\begin{array}{c}\\ {\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\times {\mathcal{P}}_{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right) \\ \le \left(\begin{array}{c}{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathfrak{G}}_{*}\left(\mu ,\varphi \right)\\ +{\mathsf{h}}_{1}\left(\varsigma \right){\mathfrak{G}}_{*}\left(\upsilon , \varphi \right)\end{array}\right)\left(\begin{array}{c}{\mathsf{h}}_{2}\left(1-\varsigma \right){\mathcal{P}}_{*}\left(\mu ,\varphi \right)\\ +\varsigma {\mathcal{P}}_{*}\left(\upsilon , \varphi \right)\end{array}\right) \\ ={\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right){\mathfrak{G}}_{*}\left(\mu ,\varphi \right)\times {\mathcal{P}}_{*}\left(\mu ,\varphi \right)\\ +{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right){\mathfrak{G}}_{*}\left(\upsilon , \varphi \right)\times {\mathcal{P}}_{*}\left(\upsilon , \varphi \right) \\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right){\mathfrak{G}}_{*}\left(\mu ,\varphi \right)\times {\mathcal{P}}_{*}\left(\upsilon , \varphi \right)\\ +{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right){\mathfrak{G}}_{*}\left(\upsilon , \varphi \right)\times {\mathcal{P}}_{*}\left(\mu ,\varphi \right),\\ {\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\times {\mathcal{P}}^{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right) \\ \le \left(\begin{array}{c}{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathfrak{G}}^{*}\left(\mu ,\varphi \right)\\ +{\mathsf{h}}_{1}\left(\varsigma \right){\mathfrak{G}}^{*}\left(\upsilon , \varphi \right)\end{array}\right)\left(\begin{array}{c}{\mathsf{h}}_{2}\left(1-\varsigma \right){\mathcal{P}}^{*}\left(\mu ,\varphi \right)\\ +{\mathsf{h}}_{2}\left(\varsigma \right){\mathcal{P}}^{*}\left(\upsilon , \varphi \right)\end{array}\right)\\ ={\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right){\mathfrak{G}}^{*}\left(\mu ,\varphi \right)\times {\mathcal{P}}^{*}\left(\mu ,\varphi \right)\\ +{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right){\mathfrak{G}}^{*}\left(\upsilon , \varphi \right){\times \mathcal{P}}^{*}\left(\upsilon , \varphi \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right){\mathfrak{G}}^{*}\left(\mu ,\varphi \right)\times {\mathcal{P}}^{*}\left(\upsilon , \varphi \right)\\ +{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right){\mathfrak{G}}^{*}\left(\upsilon , \varphi \right)\times {\mathcal{P}}^{*}\left(\mu ,\varphi \right).\end{array}$$
(28)

Analogously, we have

$$\begin{array}{c}\\ {\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right){\mathcal{P}}_{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right) \\ \le {\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right){\mathfrak{G}}_{*}\left(\mu ,\varphi \right)\times {\mathcal{P}}_{*}\left(\mu ,\varphi \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right){\mathfrak{G}}_{*}\left(\upsilon , \varphi \right)\times {\mathcal{P}}_{*}\left(\upsilon , \varphi \right)\\ +{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right){\mathfrak{G}}_{*}\left(\mu ,\varphi \right)\times {\mathcal{P}}_{*}\left(\upsilon , \varphi \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right){\mathfrak{G}}_{*}\left(\upsilon , \varphi \right)\times {\mathcal{P}}_{*}\left(\mu ,\varphi \right),\\ {\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)\times {\mathcal{P}}^{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right) \\ \le {\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right){\mathfrak{G}}^{*}\left(\mu ,\varphi \right)\times {\mathcal{P}}^{*}\left(\mu ,\varphi \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right){\mathfrak{G}}^{*}\left(\upsilon , \varphi \right)\times {\mathcal{P}}^{*}\left(\upsilon , \varphi \right)\\ +{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right){\mathfrak{G}}^{*}\left(\mu ,\varphi \right)\times {\mathcal{P}}^{*}\left(\upsilon , \varphi \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right){\mathfrak{G}}^{*}\left(\upsilon , \varphi \right)\times {\mathcal{P}}^{*}\left(\mu ,\varphi \right).\end{array}$$
(29)

Adding (28) and (29), we have

$$\begin{array}{c}\\ {\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\times {\mathcal{P}}_{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right) \\ +{\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)\times {\mathcal{P}}_{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right) \\ \le \left[\begin{array}{c}{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)\end{array}\right]\left[\begin{array}{c}{\mathfrak{G}}_{*}\left(\mu ,\varphi \right)\times {\mathcal{P}}_{*}\left(\mu ,\varphi \right)\\ +{\mathfrak{G}}_{*}\left(\upsilon , \varphi \right)\times {\mathcal{P}}_{*}\left(\upsilon , \varphi \right)\end{array}\right]\\ +\left[\begin{array}{c}{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)\end{array}\right]\left[\begin{array}{c}{\mathfrak{G}}_{*}\left(\upsilon , \varphi \right)\times {\mathcal{P}}_{*}\left(\mu ,\varphi \right)\\ +{\mathfrak{G}}_{*}\left(\mu ,\varphi \right)\times {\mathcal{P}}_{*}\left(\upsilon , \varphi \right)\end{array}\right],\\ {\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\times {\mathcal{P}}^{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right) \\ +{\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)\times {\mathcal{P}}^{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right) \\ \le \left[\begin{array}{c}{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)\end{array}\right]\left[\begin{array}{c}{\mathfrak{G}}^{*}\left(\mu ,\varphi \right)\times {\mathcal{P}}^{*}\left(\mu ,\varphi \right)\\ +{\mathfrak{G}}^{*}\left(\upsilon , \varphi \right)\times {\mathcal{P}}^{*}\left(\upsilon , \varphi \right)\end{array}\right]\\ +\left[\begin{array}{c}{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)\end{array}\right]\left[\begin{array}{c}{\mathfrak{G}}^{*}\left(\upsilon , \varphi \right)\times {\mathcal{P}}^{*}\left(\mu ,\varphi \right)\\ +{\mathfrak{G}}^{*}\left(\mu ,\varphi \right)\times {\mathcal{P}}^{*}\left(\upsilon , \varphi \right)\end{array}\right].\end{array}$$
(30)

Taking the result of multiplying (30) by \({\varsigma }^{\alpha -1}\) and integrating it with respect to \(\varsigma \) over (0, 1), we get

$$\begin{array}{c}\\ {\int }_{0}^{1}{\varsigma }^{\alpha -1}{\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\times {\mathcal{P}}_{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)d\varsigma \\ +{\int }_{0}^{1}{\varsigma }^{\alpha -1}{\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)\times {\mathcal{P}}_{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)d\varsigma \\ \le {M}_{*}\left(\left(\mu ,\upsilon \right), \varphi \right){\int }_{0}^{1}{\varsigma }^{\alpha -1}\left[\begin{array}{c}{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)\end{array}\right]d\varsigma \\ +{N}_{*}\left(\left(\mu ,\upsilon \right), \varphi \right){\int }_{0}^{1}{\varsigma }^{\alpha -1}\left[\begin{array}{c}{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)\end{array}\right]d\varsigma \\ {\int }_{0}^{1}{\varsigma }^{\alpha -1}{\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\times {\mathcal{P}}^{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)d\varsigma \\ +{\int }_{0}^{1}{\varsigma }^{\alpha -1}{\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)\times {\mathcal{P}}^{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)d\varsigma \\ \le {M}^{*}\left(\left(\mu ,\upsilon \right), \varphi \right){\int }_{0}^{1}{\varsigma }^{\alpha -1}\left[\begin{array}{c}{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)\end{array}\right]d\varsigma \\ +{N}^{*}\left(\left(\mu ,\upsilon \right), \varphi \right){\int }_{0}^{1}{\varsigma }^{\alpha -1}\left[\begin{array}{c}{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)\end{array}\right]d\varsigma .\end{array}$$

It follows that

$$\begin{array}{c}\\ \Gamma \left(\alpha \right){\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[\begin{array}{c}{\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } {\mathfrak{G}}_{*}\left(\frac{1}{\mu }, \varphi \right)\times {\mathcal{P}}_{*}\left(\frac{1}{\mu }, \varphi \right)\\ +{\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha } {\mathfrak{G}}_{*}\left(\frac{1}{\upsilon },\varphi \right)\times {\mathcal{P}}_{*}\left(\frac{1}{\upsilon },\varphi \right)\end{array}\right] \\ \le {M}_{*}\left(\left(\mu ,\upsilon \right), \varphi \right){\int }_{0}^{1}\left[\begin{array}{c}{\varsigma }^{\alpha -1}\\ +{\left(1-\varsigma \right)}^{\alpha -1}\end{array}\right]{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)d\varsigma \\ +{N}_{*}\left(\left(\mu ,\upsilon \right), \varphi \right) {\int }_{0}^{1}\left[\begin{array}{c}{\varsigma }^{\alpha -1}\\ +{\left(1-\varsigma \right)}^{\alpha -1}\end{array}\right]{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)d\varsigma \\ \Gamma \left(\alpha \right){\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[\begin{array}{c}{\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } {\mathfrak{G}}^{*}\left(\frac{1}{\mu }, \varphi \right)\times {\mathcal{P}}^{*}\left(\frac{1}{\mu }, \varphi \right)\\ +{\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha } {\mathfrak{G}}^{*}\left(\frac{1}{\upsilon },\varphi \right)\times {\mathcal{P}}^{*}\left(\frac{1}{\upsilon },\varphi \right)\end{array}\right] \\ \le {M}^{*}\left(\left(\mu ,\upsilon \right), \varphi \right){\int }_{0}^{1}\left[{\varsigma }^{\alpha -1}+{\left(1-\varsigma \right)}^{\alpha -1}\right]{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)d\varsigma \\ +{N}^{*}\left(\left(\mu ,\upsilon \right), \varphi \right){\int }_{0}^{1}\left[\begin{array}{c}{\varsigma }^{\alpha -1}\\ +{\left(1-\varsigma \right)}^{\alpha -1}\end{array}\right]{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)d\varsigma .\end{array}$$

That is

\(\Gamma \left(\alpha \right){\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[{\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } {\mathfrak{G}}_{*}\left(\frac{1}{\mu }, \varphi \right)\times {\mathcal{P}}_{*}\left(\frac{1}{\mu }, \varphi \right)+{\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha } {\mathfrak{G}}_{*}\left(\frac{1}{\upsilon },\varphi \right)\times {\mathcal{P}}_{*}\left(\frac{1}{\upsilon },\varphi \right), {\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } {\mathfrak{G}}^{*}\left(\frac{1}{\mu }, \varphi \right)\times {\mathcal{P}}^{*}\left(\frac{1}{\mu }, \varphi \right)+{\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha } {\mathfrak{G}}^{*}\left(\frac{1}{\upsilon },\varphi \right)\times {\mathcal{P}}^{*}\left(\frac{1}{\upsilon }, \varphi \right)\right]{\le }_{I}\left[{M}_{*}\left(\left(\mu ,\upsilon \right), \varphi \right), {M}^{*}\left(\left(\mu ,\upsilon \right), \varphi \right)\right]{\int }_{0}^{1}\left[\begin{array}{c}{\varsigma }^{\alpha -1}+{\left(1-\varsigma \right)}^{\alpha -1}\end{array}\right]{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)d\varsigma \)

$$+\left[{N}_{*}\left(\left(\mu ,\upsilon \right), \varphi \right), {N}^{*}\left(\left(\mu ,\upsilon \right), \varphi \right)\right].{\int }_{0}^{1}\left[\begin{array}{c}{\varsigma }^{\alpha -1}+{\left(1-\varsigma \right)}^{\alpha -1}\end{array}\right]{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)d\varsigma .$$

Thus,

$$\Gamma \left(\alpha \right){\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[\begin{array}{c}{\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } \stackrel{\sim }{\mathfrak{G}}o\psi \left(\frac{1}{\mu }\right)\stackrel{\sim }{\times }\stackrel{\sim }{\mathcal{P}}o\psi \left(\frac{1}{\mu }\right)\\ +{\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha }\stackrel{\sim }{\mathfrak{G}}o\psi \left(\frac{1}{\upsilon }\right)\stackrel{\sim }{\times }\stackrel{\sim }{\mathcal{P}}o\psi \left(\frac{1}{\upsilon }\right)\end{array}\right]\preccurlyeq \tilde{M }\left(\mu ,\upsilon \right){\int }_{0}^{1}\left[\begin{array}{c}{\varsigma }^{\alpha -1}\\ +{\left(1-\varsigma \right)}^{\alpha -1}\end{array}\right]{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)d\varsigma +\tilde{N }\left(\mu ,\upsilon \right){\int }_{0}^{1}\left[\begin{array}{c}{\varsigma }^{\alpha -1}\\ +{\left(1-\varsigma \right)}^{\alpha -1}\end{array}\right]{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)d\varsigma .$$

As a result, the theorem has been proven.

Theorem 3.4.

Let \(\stackrel{\sim }{\mathfrak{G}}\in HFSX\left(\left[\mu , \upsilon \right], {\mathbb{F}}_{0}, {\mathsf{h}}_{1}\right)\) and \(\stackrel{\sim }{\mathcal{P}}\in HFSX\left(\left[\mu , \upsilon \right], {\mathbb{F}}_{0}, {\mathsf{h}}_{2}\right)\) with \({\mathsf{h}}_{1}\left(\frac{1}{2}\right){\mathsf{h}}_{2}\left(\frac{1}{2}\right)\ne 0\), whose \(\varphi \)-cuts derive the following IVFs \({\mathfrak{G}}_{\varphi }, {\mathcal{P}}_{\varphi }:\left[\mu , \upsilon \right]\subset {\mathbb{R}}\to {\mathcal{K}}_{C}^{+}\) are given by \({\mathfrak{G}}_{\varphi }\left(\varpi \right)=\left[{\mathfrak{G}}_{*}\left(\varpi ,\varphi \right), {\mathfrak{G}}^{*}\left(\varpi ,\varphi \right)\right]\) and \({\mathcal{P}}_{\varphi }\left(\varpi \right)=\left[{\mathcal{P}}_{*}\left(\varpi ,\varphi \right), {\mathcal{P}}^{*}\left(\varpi ,\varphi \right)\right]\) for all \(\varpi \in \left[\mu , \upsilon \right]\), \(\varphi \in \left[0, 1\right]\). If \(\stackrel{\sim }{\mathfrak{G}}\stackrel{\sim }{\times }\stackrel{\sim }{\mathcal{P}}\in L\left(\left[\mu , \upsilon \right],{\mathbb{F}}_{0}\right)\), then.

\(\frac{1}{\alpha {\mathsf{h}}_{1}\left(\frac{1}{2}\right){\mathsf{h}}_{2}\left(\frac{1}{2}\right)} \stackrel{\sim }{\mathfrak{G}}\left(\frac{2\mu \upsilon }{\mu +\upsilon }\right)\stackrel{\sim }{\times }\stackrel{\sim }{\mathcal{P}}\left(\frac{2\mu \upsilon }{\mu +\upsilon }\right)\preccurlyeq \Gamma \left(\alpha \right){\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[\begin{array}{c}{\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } \stackrel{\sim }{\mathfrak{G}}o\psi \left(\frac{1}{\mu }\right)\stackrel{\sim }{\times }\stackrel{\sim }{\mathcal{P}}o\psi \left(\frac{1}{\mu }\right)\\ \stackrel{\sim }{+}{\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha } \stackrel{\sim }{\mathfrak{G}}o\psi \left(\frac{1}{\upsilon }\right)\stackrel{\sim }{\times }\stackrel{\sim }{\mathcal{P}}o\psi \left(\frac{1}{\upsilon }\right)\end{array}\right]\) \(+\tilde{M }\left(\mu ,\upsilon \right){\int }_{0}^{1}\left[\begin{array}{c}{\varsigma }^{\alpha -1}\\ +{\left(1-\varsigma \right)}^{\alpha -1}\end{array}\right]{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)d\varsigma \)

$$+\tilde{N }\left(\mu ,\upsilon \right){\int }_{0}^{1}\left[\begin{array}{c}{\varsigma }^{\alpha -1}\\ +{\left(1-\varsigma \right)}^{\alpha -1}\end{array}\right]{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)d\varsigma ,$$

where \(\tilde{M }\left(\mu ,\upsilon \right)=\stackrel{\sim }{\mathfrak{G}}\left(\mu \right)\stackrel{\sim }{\times }\stackrel{\sim }{\mathcal{P}}\left(\mu \right) \stackrel{\sim }{+} \stackrel{\sim }{\mathfrak{G}}\left(\upsilon \right)\stackrel{\sim }{\times }\stackrel{\sim }{\mathcal{P}}\left(\upsilon \right),\) \(\tilde{N }\left(\mu ,\upsilon \right)=\stackrel{\sim }{\mathfrak{G}}\left(\mu \right)\stackrel{\sim }{\times }\stackrel{\sim }{\mathcal{P}}\left(\upsilon \right) \stackrel{\sim }{+} \stackrel{\sim }{\mathfrak{G}}\left(\upsilon \right)\stackrel{\sim }{\times }\stackrel{\sim }{\mathcal{P}}\left(\mu \right),\) and \({M}_{\varphi }\left(\mu ,\upsilon \right)=\left[{M}_{*}\left(\left(\mu ,\upsilon \right), \varphi \right), {M}^{*}\left(\left(\mu ,\upsilon \right), \varphi \right)\right]\) and \({N}_{\varphi }\left(\mu ,\upsilon \right)=\left[{N}_{*}\left(\left(\mu ,\upsilon \right), \varphi \right), {N}^{*}\left(\left(\mu ,\upsilon \right), \varphi \right)\right].\)

Proof.

Consider \(\stackrel{\sim }{\mathfrak{G}},\stackrel{\sim }{\mathcal{P}} :\left[\mu , \upsilon \right]\to {\mathbb{F}}_{0}\) are \(\mathcal{H}-{\mathsf{h}}_{1}\) and \(\mathcal{H}-{\mathsf{h}}_{2}\)-convex FIVFs. Then, by hypothesis, for each \(\varphi \in \left[0, 1\right],\) we have

\(\begin{array}{c}{\mathfrak{G}}_{*}\left(\frac{2\mu \upsilon }{\mu +\upsilon },\varphi \right)\times {\mathcal{P}}_{*}\left(\frac{2\mu \upsilon }{\mu +\upsilon },\varphi \right) \\ {\mathfrak{G}}^{*}\left(\frac{2\mu \upsilon }{\mu +\upsilon },\varphi \right)\times {\mathcal{P}}^{*}\left(\frac{2\mu \upsilon }{\mu +\upsilon },\varphi \right)\end{array}\)

\(\begin{array}{c}\le {\mathsf{h}}_{1}\left(\frac{1}{2}\right){\mathsf{h}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\times {\mathcal{P}}_{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\\ +{\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\times {\mathcal{P}}_{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)\end{array}\right] \\ + {\mathsf{h}}_{1}\left(\frac{1}{2}\right){\mathsf{h}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right){\times \mathcal{P}}_{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\\ +{\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right){\times \mathcal{P}}_{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)\end{array}\right] \\ \le {\mathsf{h}}_{1}\left(\frac{1}{2}\right){\mathsf{h}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right){\times \mathcal{P}}^{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\\ +{\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right){\times \mathcal{P}}^{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)\end{array}\right] \\ +{\mathsf{h}}_{1}\left(\frac{1}{2}\right){\mathsf{h}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right){\times \mathcal{P}}^{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\\ +{\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right){\times \mathcal{P}}^{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)\end{array}\right],\end{array}\)

$$\begin{array}{c}\le {\mathsf{h}}_{1}\left(\frac{1}{2}\right){\mathsf{h}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right){\times \mathcal{P}}_{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\\ +{\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right){\times \mathcal{P}}_{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)\end{array}\right] \\ + {\mathsf{h}}_{1}\left(\frac{1}{2}\right){\mathsf{h}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}\left({\mathsf{h}}_{1}\left(\varsigma \right){\mathfrak{G}}_{*}\left(\mu , \varphi \right)+{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathfrak{G}}_{*}\left(\upsilon , \varphi \right)\right)\\ \times \left({\mathsf{h}}_{2}\left(1-\varsigma \right){\mathcal{P}}_{*}\left(\mu , \varphi \right)+{\mathsf{h}}_{2}\left(\varsigma \right){\mathcal{P}}_{*}\left(\upsilon , \varphi \right)\right)\\ +\left({{\mathsf{h}}_{1}\left(1-\varsigma \right)\mathfrak{G}}_{*}\left(\mu , \varphi \right)+{\mathsf{h}}_{1}\left(\varsigma \right){\mathfrak{G}}_{*}\left(\upsilon , \varphi \right)\right)\\ \times \left({\mathsf{h}}_{2}\left(\varsigma \right){\mathcal{P}}_{*}\left(\mu , \varphi \right)+{\mathsf{h}}_{2}\left(1-\varsigma \right){\mathcal{P}}_{*}\left(\upsilon , \varphi \right)\right)\end{array}\right] \\ \le {\mathsf{h}}_{1}\left(\frac{1}{2}\right){\mathsf{h}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right){\times \mathcal{P}}^{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\\ +{\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right){\times \mathcal{P}}^{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)\end{array}\right]\\ +{\mathsf{h}}_{1}\left(\frac{1}{2}\right){\mathsf{h}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}\left({\mathsf{h}}_{1}\left(\varsigma \right){\mathfrak{G}}^{*}\left(\mu , \varphi \right)+{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathfrak{G}}^{*}\left(\upsilon , \varphi \right)\right)\\ \times \left({\mathsf{h}}_{2}\left(1-\varsigma \right){\mathcal{P}}^{*}\left(\mu , \varphi \right)+{\mathsf{h}}_{2}\left(\varsigma \right){\mathcal{P}}^{*}\left(\upsilon , \varphi \right)\right)\\ +\left({\mathsf{h}}_{1}\left(1-\varsigma \right){\mathfrak{G}}^{*}\left(\mu , \varphi \right)+{\mathsf{h}}_{1}\left(\varsigma \right){\mathfrak{G}}^{*}\left(\upsilon , \varphi \right)\right)\\ \times \left({\mathsf{h}}_{2}\left(\varsigma \right){\mathcal{P}}^{*}\left(\mu , \varphi \right)+{\mathsf{h}}_{2}\left(1-\varsigma \right){\mathcal{P}}^{*}\left(\upsilon , \varphi \right)\right)\end{array}\right],\end{array}$$
$$\begin{array}{c}={\mathsf{h}}_{1}\left(\frac{1}{2}\right){\mathsf{h}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right){\times \mathcal{P}}_{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\\ +{\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right){\times \mathcal{P}}_{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)\end{array}\right] \\ + {\mathsf{h}}_{1}\left(\frac{1}{2}\right){\mathsf{h}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}\left\{\begin{array}{c}{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)\end{array}\right\}{M}_{*}\left(\left(\mu ,\upsilon \right), \varphi \right)\\ +\left\{\begin{array}{c}{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)\end{array}\right\}{N}_{*}\left(\left(\mu ,\upsilon \right), \varphi \right)\end{array}\right] \\ ={\mathsf{h}}_{1}\left(\frac{1}{2}\right){\mathsf{h}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right){\times \mathcal{P}}^{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\\ +{\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right){\times \mathcal{P}}^{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)\end{array}\right] \\ + {\mathsf{h}}_{1}\left(\frac{1}{2}\right){\mathsf{h}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}\left\{\begin{array}{c}{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)\end{array}\right\}{M}^{*}\left(\left(\mu ,\upsilon \right), \varphi \right)\\ +\left\{\begin{array}{c}{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)\end{array}\right\}{N}^{*}\left(\left(\mu ,\upsilon \right), \varphi \right)\end{array}\right].\end{array}$$
(31)

Inequality (31) is multiplied by \({\varsigma }^{\alpha -1}\) and integrated over \((0, 1),\)

$$\begin{array}{c}\\ \frac{1}{{\mathsf{h}}_{1}\left(\frac{1}{2}\right){\mathsf{h}}_{2}\left(\frac{1}{2}\right)}{\mathfrak{G}}_{*}\left(\frac{2\mu \upsilon }{\mu +\upsilon },\varphi \right)\times {\mathcal{P}}_{*}\left(\frac{2\mu \upsilon }{\mu +\upsilon },\varphi \right){\int }_{0}^{1}{\varsigma }^{\alpha -1}d\varsigma \\ \le \left[\begin{array}{c}{\int }_{0}^{1}{\varsigma }^{\alpha -1}{\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\times {\mathcal{P}}_{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)d\varsigma \\ +{\int }_{0}^{1}{\varsigma }^{\alpha -1}{\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)\times {\mathcal{P}}_{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)d\varsigma \end{array}\right]\\ +\left[\begin{array}{c}{M}_{*}\left(\left(\mu ,\upsilon \right), \varphi \right){\int }_{0}^{1}{\varsigma }^{\alpha -1}\left\{\begin{array}{c}{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)\end{array}\right\}d\varsigma \\ +{N}_{*}\left(\left(\mu ,\upsilon \right), \varphi \right){\int }_{0}^{1}\left\{\begin{array}{c}{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)\end{array}\right\}d\varsigma \end{array}\right]\\ \frac{1}{{\mathsf{h}}_{1}\left(\frac{1}{2}\right){\mathsf{h}}_{2}\left(\frac{1}{2}\right)}{\mathfrak{G}}^{*}\left(\frac{2\mu \upsilon }{\mu +\upsilon },\varphi \right)\times {\mathcal{P}}^{*}\left(\frac{2\mu \upsilon }{\mu +\upsilon },\varphi \right) {\int }_{0}^{1}{\varsigma }^{\alpha -1}d\varsigma \\ \le \left[\begin{array}{c}{\int }_{0}^{1}{\varsigma }^{\alpha -1}{\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\times {\mathcal{P}}^{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)d\varsigma \\ +{\int }_{0}^{1}{\varsigma }^{\alpha -1}{\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)\times {\mathcal{P}}^{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)d\varsigma \end{array}\right] \\ +\left[\begin{array}{c}{M}^{*}\left(\left(\mu ,\upsilon \right), \varphi \right){\int }_{0}^{1}{\varsigma }^{\alpha -1}\left\{\begin{array}{c}{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)\end{array}\right\}d\varsigma \\ +{N}^{*}\left(\left(\mu ,\upsilon \right), \varphi \right){\int }_{0}^{1}{\varsigma }^{\alpha -1}\left\{\begin{array}{c}{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)\end{array}\right\}d\varsigma \end{array}\right]\end{array}$$

Taking \(\varpi =\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\) and \(\mathcal{Z}=\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }\), then we get

$$\begin{array}{c}\frac{1}{\alpha {\mathsf{h}}_{1}\left(\frac{1}{2}\right){\mathsf{h}}_{2}\left(\frac{1}{2}\right)} {\mathfrak{G}}_{*}\left(\frac{2\mu \upsilon }{\mu +\upsilon },\varphi \right){\times \mathcal{P}}_{*}\left(\frac{2\mu \upsilon }{\mu +\upsilon },\varphi \right) \\ \le \Gamma \left(\alpha \right){\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[\begin{array}{c}{\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } {\mathfrak{G}}_{*}o\psi \left(\frac{1}{\mu }\right){\times \mathcal{P}}_{*}o\psi \left(\frac{1}{\mu }\right)\\ +{\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha } {\mathfrak{G}}_{*}o\psi \left(\frac{1}{\upsilon }\right){\times \mathcal{P}}_{*}o\psi \left(\frac{1}{\upsilon }\right)\end{array}\right] \\ +\left[\begin{array}{c}{M}_{*}\left(\left(\mu ,\upsilon \right), \varphi \right){\int }_{0}^{1}{\varsigma }^{\alpha -1}\left\{\begin{array}{c}{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)\end{array}\right\}d\varsigma \\ +{N}_{*}\left(\left(\mu ,\upsilon \right), \varphi \right){\int }_{0}^{1}\left\{\begin{array}{c}{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)\end{array}\right\}d\varsigma \end{array}\right]\\ \frac{1}{\alpha {\mathsf{h}}_{1}\left(\frac{1}{2}\right){\mathsf{h}}_{2}\left(\frac{1}{2}\right)} {\mathfrak{G}}^{*}\left(\frac{2\mu \upsilon }{\mu +\upsilon },\varphi \right)\times {\mathcal{P}}^{*}\left(\frac{2\mu \upsilon }{\mu +\upsilon },\varphi \right) \\ \le \Gamma \left(\alpha \right){\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[\begin{array}{c}{\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } {\mathfrak{G}}^{*}o\psi \left(\frac{1}{\mu }\right)\times {\mathcal{P}}^{*}o\psi \left(\frac{1}{\mu }\right)\\ +{\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha } {\mathfrak{G}}^{*}o\psi \left(\frac{1}{\upsilon },\varphi \right)\times {\mathcal{P}}^{*}o\psi \left(\frac{1}{\upsilon },\varphi \right)\end{array}\right]\\ +\left[\begin{array}{c}{M}^{*}\left(\left(\mu ,\upsilon \right), \varphi \right){\int }_{0}^{1}{\varsigma }^{\alpha -1}\left\{\begin{array}{c}{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)\end{array}\right\}d\varsigma \\ +{N}^{*}\left(\left(\mu ,\upsilon \right), \varphi \right){\int }_{0}^{1}{\varsigma }^{\alpha -1}\left\{\begin{array}{c}{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)\\ +{\mathsf{h}}_{1}\left(1-\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)\end{array}\right\}d\varsigma \end{array}\right],\end{array}$$

that is

\(\frac{1}{\alpha {\mathsf{h}}_{1}\left(\frac{1}{2}\right){\mathsf{h}}_{2}\left(\frac{1}{2}\right)} \stackrel{\sim }{\mathfrak{G}}\left(\frac{2\mu \upsilon }{\mu +\upsilon }\right)\stackrel{\sim }{\times }\stackrel{\sim }{\mathcal{P}}\left(\frac{2\mu \upsilon }{\mu +\upsilon }\right)\)

\(\preccurlyeq \Gamma \left(\alpha \right){\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[\begin{array}{c}{\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } \stackrel{\sim }{\mathfrak{G}}o\psi \left(\frac{1}{\mu }\right)\stackrel{\sim }{\times }\stackrel{\sim }{\mathcal{P}}o\psi \left(\frac{1}{\mu }\right)\\ \stackrel{\sim }{+}{\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha } \stackrel{\sim }{\mathfrak{G}}o\psi \left(\frac{1}{\upsilon }\right)\stackrel{\sim }{\times }\stackrel{\sim }{\mathcal{P}}o\psi \left(\frac{1}{\upsilon }\right)\end{array}\right]+\tilde{M }\left(\mu ,\upsilon \right){\int }_{0}^{1}\left[\begin{array}{c}{\varsigma }^{\alpha -1}\\ +{\left(1-\varsigma \right)}^{\alpha -1}\end{array}\right]{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(1-\varsigma \right)d\varsigma \)

$$+\tilde{N }\left(\mu ,\upsilon \right){\int }_{0}^{1}\left[\begin{array}{c}{\varsigma }^{\alpha -1}\\ +{\left(1-\varsigma \right)}^{\alpha -1}\end{array}\right]{\mathsf{h}}_{1}\left(\varsigma \right){\mathsf{h}}_{2}\left(\varsigma \right)d\varsigma .$$

As a result, the desired outcome has been achieved.

For ℋ − -convex FIVFs, we now have HH Fejér inequalities. For ℋ − -convex FIVF, we first get the second HH Fejér inequality.

Theorem 3.5.

Let \(\stackrel{\sim }{\mathfrak{G}}\in HFSX\left(\left[\mu , \upsilon \right], {\mathbb{F}}_{0}, \mathsf{h}\right)\), whose \(\varphi \)-cuts derive the following IVFs \({\mathfrak{G}}_{\varphi }:\left[\mu , \upsilon \right]\subset {\mathbb{R}}\to {\mathcal{K}}_{C}^{+}\) are given by \({\mathfrak{G}}_{\varphi }\left(\varpi \right)=\left[{\mathfrak{G}}_{*}\left(\varpi ,\varphi \right), {\mathfrak{G}}^{*}\left(\varpi ,\varphi \right)\right]\) for all \(\varpi \in \left[\mu , \upsilon \right]\), \(\varphi \in \left[0, 1\right]\). If \(\stackrel{\sim }{\mathfrak{G}}\in L\left(\left[\mu , \upsilon \right],{\mathbb{F}}_{0}\right)\) and \(\Omega :\left[\mu , \upsilon \right]\to {\mathbb{R}}, \Omega \left(\frac{1}{\frac{1}{\mu }+\frac{1}{\upsilon }-\frac{1}{\varpi }}\right)=\Omega (\varpi )\ge 0,\) then

$$\Gamma \left(\alpha \right){\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[{\mathcal{I}}_{{\frac{1}{\upsilon }}^{+}}^{\alpha } \left(\Omega \mathrm{o}\psi \right)\left(\frac{1}{\mu }\right)+ {\mathcal{I}}_{{\frac{1}{\mu }}^{-}}^{\alpha }\left(\Omega \mathrm{o}\psi \right)\left(\frac{1}{\upsilon }\right)\right]\preccurlyeq \frac{\stackrel{\sim }{\mathfrak{G}}\left(\mu \right)\stackrel{\sim }{+}\stackrel{\sim }{\mathfrak{G}}\left(\upsilon \right)}{2}{\int }_{0}^{1}\begin{array}{c}{\varsigma }^{\alpha -1}\left\{\begin{array}{c}h\left(\varsigma \right)\\ +h\left(1-\varsigma \right)\end{array}\right\}\Omega \left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right)\end{array}d\varsigma .$$
(32)

If \(\stackrel{\sim }{\mathfrak{G}}\in HFSV\left(\left[\mu , \upsilon \right], {\mathbb{F}}_{0}, \mathsf{h}\right)\), then inequality (32) is reversed such that

$$\Gamma \left(\alpha \right){\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[{\mathcal{I}}_{{\frac{1}{\upsilon }}^{+}}^{\alpha } \left(\Omega \mathrm{o}\psi \right)\left(\frac{1}{\mu }\right)+ {\mathcal{I}}_{{\frac{1}{\mu }}^{-}}^{\alpha }\left(\Omega \mathrm{o}\psi \right)\left(\frac{1}{\upsilon }\right)\right]\succcurlyeq \frac{\stackrel{\sim }{\mathfrak{G}}\left(\mu \right)\stackrel{\sim }{+}\stackrel{\sim }{\mathfrak{G}}\left(\upsilon \right)}{2}{\int }_{0}^{1}\begin{array}{c}{\varsigma }^{\alpha -1}\left\{\mathsf{h}\left(\varsigma \right)+\mathsf{h}\left(1-\varsigma \right)\right\}\Omega \left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right)\end{array}d\varsigma .$$

Proof.

Let \(\stackrel{\sim }{\mathfrak{G}}\in HFSX\left(\left[\mu , \upsilon \right], {\mathbb{F}}_{0}, \mathsf{h}\right)\) and \({\varsigma }^{\alpha -1}\Omega \left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right)\ge 0\). Then, for each \(\varphi \in \left[0, 1\right],\) we have

$$\begin{array}{c}\\ {\varsigma }^{\alpha -1}{\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\Omega \left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right) \\ \le {\varsigma }^{\alpha -1}\left(\begin{array}{c}h\left(1-\varsigma \right){\mathfrak{G}}_{*}\left(\mu , \varphi \right)\\ +h\left(\varsigma \right){\mathfrak{G}}_{*}\left(\upsilon , \varphi \right)\end{array}\right)\Omega \left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right)\\ {\varsigma }^{\alpha -1}{\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\Omega \left(\varsigma \mu +\left(1-\varsigma \right)\upsilon \right) \\ \le {\varsigma }^{\alpha -1}\left(\begin{array}{c}h\left(1-\varsigma \right){\mathfrak{G}}^{*}\left(\mu , \varphi \right)\\ +h\left(\varsigma \right){\mathfrak{G}}^{*}\left(\upsilon , \varphi \right)\end{array}\right)\Omega \left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right).\end{array}$$
(33)

and

$$\begin{array}{c}\\ {\varsigma }^{\alpha -1}{\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)\Omega \left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right) \\ \le {\varsigma }^{\alpha -1}\left(\begin{array}{c}h\left(\varsigma \right){\mathfrak{G}}_{*}\left(\mu , \varphi \right)\\ +h\left(1-\varsigma \right){\mathfrak{G}}_{*}\left(\upsilon , \varphi \right)\end{array}\right)\Omega \left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right)\\ {\varsigma }^{\alpha -1}{\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)\Omega \left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right) \\ \le {\varsigma }^{\alpha -1}\left(\begin{array}{c}h\left(\varsigma \right){\mathfrak{G}}^{*}\left(\mu , \varphi \right)\\ +h\left(1-\varsigma \right){\mathfrak{G}}^{*}\left(\upsilon , \varphi \right)\end{array}\right)\Omega \left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right).\end{array}$$
(34)

After adding (33) and (34), and integrating over \(\left[0, 1\right],\) we get

$$\begin{array}{c}\\ {\int }_{0}^{1}{\varsigma }^{\alpha -1}{\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\Omega \left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right)d\varsigma \\ +{\int }_{0}^{1}{\varsigma }^{\alpha -1}{\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)\Omega \left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right)d\varsigma \\ \le {\int }_{0}^{1}\left[\begin{array}{c}{\varsigma }^{\alpha -1}{\mathfrak{G}}_{*}\left(\mu , \varphi \right)\left\{\begin{array}{c}h\left(\varsigma \right)\\ +h\left(1-\varsigma \right)\end{array}\right\}\Omega \left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right)\\ +{\varsigma }^{\alpha -1}{\mathfrak{G}}_{*}\left(\upsilon , \varphi \right)\left\{\begin{array}{c}h\left(1-\varsigma \right)\\ +h\left(\varsigma \right)\end{array}\right\}\Omega \left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right)\end{array}\right]d\varsigma ,\\ {\int }_{0}^{1}{\varsigma }^{\alpha -1}{\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\Omega \left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right)d\varsigma \\ +{\int }_{0}^{1}{\varsigma }^{\alpha -1}{\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)\Omega \left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right)d\varsigma \\ \le {\int }_{0}^{1}\left[\begin{array}{c}{\varsigma }^{\alpha -1}{\mathfrak{G}}^{*}\left(\mu , \varphi \right)\left\{\begin{array}{c}h\left(\varsigma \right)\\ +h\left(1-\varsigma \right)\end{array}\right\}\Omega \left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right)\\ +{\varsigma }^{\alpha -1}{\mathfrak{G}}^{*}\left(\upsilon , \varphi \right)\left\{\begin{array}{c}h\left(1-\varsigma \right)\\ +h\left(\varsigma \right)\end{array}\right\}\Omega \left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right)\end{array}\right]d\varsigma ,\end{array}$$
$$\begin{array}{c}\\ ={\mathfrak{G}}_{*}\left(\mu , \varphi \right){\int }_{0}^{1}\begin{array}{c}{\varsigma }^{\alpha -1}\left\{\mathsf{h}\left(\varsigma \right)+\mathsf{h}\left(1-\varsigma \right)\right\}\Omega \left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right)\end{array}d\varsigma \\ +{\mathfrak{G}}_{*}\left(\upsilon , \varphi \right){\int }_{0}^{1}\begin{array}{c}{\varsigma }^{\alpha -1}\left\{\mathsf{h}\left(1-\varsigma \right)+\mathsf{h}\left(\varsigma \right)\right\}\Omega \left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right)\end{array}d\varsigma ,\\ ={\mathfrak{G}}^{*}\left(\mu , \varphi \right){\int }_{0}^{1}\begin{array}{c}{\varsigma }^{\alpha -1}\left\{\mathsf{h}\left(\varsigma \right)+\mathsf{h}\left(1-\varsigma \right)\right\}\Omega \left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right)\end{array}d\varsigma \\ +{\mathfrak{G}}^{*}\left(\upsilon , \varphi \right){\int }_{0}^{1}\begin{array}{c}{\varsigma }^{\alpha -1}\left\{\mathsf{h}\left(1-\varsigma \right)+\mathsf{h}\left(\varsigma \right)\right\}\Omega \left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right)\end{array}d\varsigma .\end{array}$$
(35)

From which, we have

$$\Gamma \left(\alpha \right){\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[{\mathcal{I}}_{{\frac{1}{\upsilon }}^{+}}^{\alpha } \left(\Omega \mathrm{o}\psi \right)\left(\frac{1}{\mu }\right)+ {\mathcal{I}}_{{\frac{1}{\mu }}^{-}}^{\alpha }\left(\Omega \mathrm{o}\psi \right)\left(\frac{1}{\upsilon }\right)\right]{\le }_{I}\frac{{\mathfrak{G}}_{\varphi }\left(\mu \right)+{\mathfrak{G}}_{\varphi }\left(\upsilon \right)}{2}{\int }_{0}^{1}\begin{array}{c}{\varsigma }^{\alpha -1}\left\{\begin{array}{c}h\left(\varsigma \right)+\\ h\left(1-\varsigma \right)\end{array}\right\}\Omega \left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right)\end{array}d\varsigma ,$$

that is

$$\Gamma \left(\alpha \right){\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[{\mathcal{I}}_{{\frac{1}{\upsilon }}^{+}}^{\alpha } \left(\Omega \mathrm{o}\psi \right)\left(\frac{1}{\mu }\right)+ {\mathcal{I}}_{{\frac{1}{\mu }}^{-}}^{\alpha }\left(\Omega \mathrm{o}\psi \right)\left(\frac{1}{\upsilon }\right)\right]\preccurlyeq \frac{\stackrel{\sim }{\mathfrak{G}}\left(\mu \right)\stackrel{\sim }{+}\stackrel{\sim }{\mathfrak{G}}\left(\upsilon \right)}{2}{\int }_{0}^{1}\begin{array}{c}{\varsigma }^{\alpha -1}\left\{\mathsf{h}\left(\varsigma \right)+\mathsf{h}\left(1-\varsigma \right)\right\}\Omega \left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\right)\end{array}d\varsigma .$$

As a result, the desired result has been achieved.

Following result obtains the first FI fractional \(H\cdot H\) Fejér inequality.

Theorem 3.6.

Let \(\stackrel{\sim }{\mathfrak{G}}\in HFSX\left(\left[\mu , \upsilon \right], {\mathbb{F}}_{0}, \mathsf{h}\right)\), whose \(\varphi \)-cuts derive the following IVFs \({\mathfrak{G}}_{\varphi }:\left[\mu , \upsilon \right]\subset {\mathbb{R}}\to {\mathcal{K}}_{C}^{+}\) are given by \({\mathfrak{G}}_{\varphi }\left(\varpi \right)=\left[{\mathfrak{G}}_{*}\left(\varpi ,\varphi \right), {\mathfrak{G}}^{*}\left(\varpi ,\varphi \right)\right]\) for all \(\varpi \in \left[\mu , \upsilon \right]\), \(\varphi \in \left[0, 1\right]\). If \(\stackrel{\sim }{\mathfrak{G}}\in L\left(\left[\mu , \upsilon \right],{\mathbb{F}}_{0}\right)\) and \(\Omega :\left[\mu , \upsilon \right]\to {\mathbb{R}}, \Omega \left(\frac{1}{\frac{1}{\mu }+\frac{1}{\upsilon }-\frac{1}{\varpi }}\right)=\Omega (\varpi )\ge 0,\) then.

$$\frac{1}{2\mathsf{h}\left(\frac{1}{2}\right)}\stackrel{\sim }{\mathfrak{G}}\left(\frac{2\mu \upsilon }{\mu +\upsilon }\right)\left[{\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } \left(\Omega \mathrm{o}\psi \right)\left(\frac{1}{\mu }\right)+ {\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha }\left(\Omega \mathrm{o}\psi \right)\left(\frac{1}{\upsilon }\right)\right]\preccurlyeq \left[{\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } \left(\stackrel{\sim }{\mathfrak{G}}\Omega \mathrm{o}\psi \right)\left(\frac{1}{\mu }\right)\stackrel{\sim }{+}{\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha } \left(\stackrel{\sim }{\mathfrak{G}}\Omega \mathrm{o}\psi \right)\left(\frac{1}{\upsilon }\right)\right]$$
(36)

If \(\stackrel{\sim }{\mathfrak{G}}\in HFSV\left(\left[\mu , \upsilon \right], {\mathbb{F}}_{0}, \mathsf{h}\right)\), then inequality (36) is reversed such that

$$\frac{1}{2\mathsf{h}\left(\frac{1}{2}\right)}\stackrel{\sim }{\mathfrak{G}}\left(\frac{2\mu \upsilon }{\mu +\upsilon }\right)\left[{\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } \left(\Omega \mathrm{o}\psi \right)\left(\frac{1}{\mu }\right)+ {\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha }\left(\Omega \mathrm{o}\psi \right)\left(\frac{1}{\upsilon }\right)\right]\succcurlyeq \left[{\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } \left(\stackrel{\sim }{\mathfrak{G}}\Omega \mathrm{o}\psi \right)\left(\frac{1}{\mu }\right)\stackrel{\sim }{+}{\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha } \left(\stackrel{\sim }{\mathfrak{G}}\Omega \mathrm{o}\psi \right)\left(\frac{1}{\upsilon }\right)\right]$$

Proof.

Since \(\stackrel{\sim }{\mathfrak{G}}\in HFSX\left(\left[\mu , \upsilon \right], {\mathbb{F}}_{0}, \mathsf{h}\right)\), then for \(\varphi \in \left[0, 1\right],\) we have.

$$\begin{array}{c}\\ {\mathfrak{G}}_{*}\left(\frac{2\mu \upsilon }{\mu +\upsilon }, \varphi \right)\le h\left(\frac{1}{2}\right)\left(\begin{array}{c}{\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\\ +{\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)\end{array}\right)\\ {\mathfrak{G}}^{*}\left(\frac{2\mu \upsilon }{\mu +\upsilon }, \varphi \right)\le h\left(\frac{1}{2}\right)\left(\begin{array}{c}{\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\\ +{\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)\end{array}\right),\end{array}$$
(37)

Multiplying both sides by (37) by \({\varsigma }^{\alpha -1}\Omega \left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }\right)\) and then integrating the resultant with respect to \(\varsigma \) over \(\left[0, 1\right],\) we obtain

$$\begin{array}{c}\\ {\mathfrak{G}}_{*}\left(\frac{2\mu \upsilon }{\mu +\upsilon }, \varphi \right){\int }_{0}^{1}{\varsigma }^{\alpha -1}\Omega \left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }\right)d\varsigma \\ \le h\left(\frac{1}{2}\right)\left(\begin{array}{c}{\int }_{0}^{1}{\varsigma }^{\alpha -1}{\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\Omega \left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }\right)d\varsigma \\ +{\int }_{0}^{1}{\varsigma }^{\alpha -1}{\mathfrak{G}}_{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)\Omega \left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }\right)d\varsigma \end{array}\right),\\ {\mathfrak{G}}^{*}\left(\frac{2\mu \upsilon }{\mu +\upsilon }, \varphi \right){\int }_{0}^{1}{\varsigma }^{\alpha -1}\Omega \left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }\right)d\varsigma \\ \le h\left(\frac{1}{2}\right)\left(\begin{array}{c}{\int }_{0}^{1}{\varsigma }^{\alpha -1}{\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }, \varphi \right)\Omega \left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }\right)d\varsigma \\ +{\int }_{0}^{1}{\varsigma }^{\alpha -1}{\mathfrak{G}}^{*}\left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }, \varphi \right)\Omega \left(\frac{\mu \upsilon }{\left(1-\varsigma \right)\mu +\varsigma \upsilon }\right)d\varsigma \end{array}\right).\end{array}$$
(38)

Let \(\varpi =\frac{\mu \upsilon }{\varsigma \mu +\left(1-\varsigma \right)\upsilon }\). Then, we have

$$\begin{array}{c}\\ \frac{1}{\mathsf{h}\left(\frac{1}{2}\right)}{\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }{\mathfrak{G}}_{*}\left(\frac{2\mu \upsilon }{\mu +\upsilon }, \varphi \right)\underset{\frac{1}{\upsilon }}{\overset{\frac{1}{\mu }}{\int }}{\left(\varpi -\frac{1}{\upsilon }\right)}^{\alpha -1}\Omega \left(\frac{1}{\varpi },\varphi \right)d\varpi \\ \le {\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha } {\int }_{\frac{1}{\upsilon }}^{\frac{1}{\mu }}{\left(\varpi -\frac{1}{\upsilon }\right)}^{\alpha -1}{\mathfrak{G}}_{*}\left(\frac{1}{\frac{1}{\mu }+\frac{1}{\upsilon }-\frac{1}{\varpi }},\varphi \right)\Omega \left(\frac{1}{\varpi }\right)d\varpi \\ +{\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha } {\int }_{\mu }^{\frac{1}{\mu }}{\left(\varpi -\frac{1}{\upsilon }\right)}^{\alpha -1}{\mathfrak{G}}_{*}\left(\frac{1}{\varpi },\varphi \right)\Omega \left(\frac{1}{\varpi }\right)d\varpi \\ ={\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha } {\int }_{\frac{1}{\upsilon }}^{\frac{1}{\mu }}{\left(\frac{1}{\mu }-\varpi \right)}^{\alpha -1}{\mathfrak{G}}_{*}\left(\varpi ,\varphi \right)\Omega \left(\frac{1}{\frac{1}{\mu }+\frac{1}{\upsilon }-\frac{1}{\varpi }}\right)d\varpi \\ +{\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha } {\int }_{\frac{1}{\upsilon }}^{\frac{1}{\mu }}{\left(\varpi -\frac{1}{\upsilon }\right)}^{\alpha -1}{\mathfrak{G}}_{*}\left(\frac{1}{\varpi },\varphi \right)\Omega \left(\frac{1}{\varpi }\right)d\varpi \\ =2\Gamma (\alpha ){\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[{\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } {\mathfrak{G}}_{*}\Omega \left(\frac{1}{\mu }\right)+{\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha } {\mathfrak{G}}_{*}\Omega \left(\frac{1}{\upsilon }\right)\right], \\ \frac{1}{\mathsf{h}\left(\frac{1}{2}\right)}{\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }{\mathfrak{G}}_{*}\left(\frac{2\mu \upsilon }{\mu +\upsilon }, \varphi \right)\underset{\frac{1}{\upsilon }}{\overset{\frac{1}{\mu }}{\int }}{(\varpi -\frac{1}{\upsilon })}^{\alpha -1}{\Omega }_{*}\left(\frac{1}{\varpi },\varphi \right)d\varpi \\ \le 2\Gamma \left(\alpha \right){\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[{\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } {\mathfrak{G}}^{*}\Omega \left(\frac{1}{\mu }\right)+{\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha } {\mathfrak{G}}^{*}\Omega \left(\frac{1}{\upsilon }\right)\right].\end{array}$$
(39)

From (39), we have

$$\begin{array}{c}\\ \Gamma \left(\alpha \right)\frac{1}{2\mathsf{h}\left(\frac{1}{2}\right)}{\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[{\mathfrak{G}}_{*}\left(\frac{2\mu \upsilon }{\mu +\upsilon }, \varphi \right), {\mathfrak{G}}^{*}\left(\frac{2\mu \upsilon }{\mu +\upsilon }, \varphi \right)\right] \\ \times \left[\begin{array}{c}{\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } \Omega \left(\frac{1}{\mu }\right)+{\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha } \Omega \left(\frac{1}{\upsilon }\right)\end{array}\right]\\ {\begin{array}{c} \begin{array}{c}\le \end{array}\end{array}}_{I}\Gamma (\alpha ){\left(\frac{\mu \upsilon }{\upsilon -\mu }\right)}^{\alpha }\left[\begin{array}{c} {\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } {\mathfrak{G}}_{*}\Omega \left(\frac{1}{\mu }\right)+{\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha } {\mathfrak{G}}_{*}\Omega \left(\frac{1}{\upsilon }\right) \\ , {\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } {\mathfrak{G}}^{*}\Omega \left(\frac{1}{\mu }\right)+{\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha } {\mathfrak{G}}^{*}\Omega \left(\frac{1}{\upsilon }\right)\end{array}\right], \\ \end{array}$$

that is

$$\frac{1}{2\mathsf{h}\left(\frac{1}{2}\right)}\stackrel{\sim }{\mathfrak{G}}\left(\frac{2\mu \upsilon }{\mu +\upsilon }\right)\left[{\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } \left(\Omega \mathrm{o}\psi \right)\left(\frac{1}{\mu }\right)+ {\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha }\left(\Omega \mathrm{o}\psi \right)\left(\frac{1}{\upsilon }\right)\right]\preccurlyeq \left[{\mathcal{I}}_{{\left(\frac{1}{\upsilon }\right)}^{+}}^{\alpha } \left(\stackrel{\sim }{\mathfrak{G}}\Omega \mathrm{o}\psi \right)\left(\frac{1}{\mu }\right)\stackrel{\sim }{+} {\mathcal{I}}_{{\left(\frac{1}{\mu }\right)}^{-}}^{\alpha } \left(\stackrel{\sim }{\mathfrak{G}}\Omega \mathrm{o}\psi \right)\left(\frac{1}{\upsilon }\right)\right].$$

The theorem has been proved.

Remark 3.7.

From Theorem 3.5 and Theorem 3.6, following result can be obtained:

On fixing \(\mathsf{h}\left(\varsigma \right)=\varsigma \) and \(\alpha =1\) then following HH inequality is obtained, see [33]:

\(\stackrel{\sim }{\mathfrak{G}}\left(\frac{2\mu \upsilon }{\mu +\upsilon }\right){\int }_{\mu }^{\upsilon }\frac{\Omega \left(\varpi \right)}{{\varpi }^{2}}d\varpi \preccurlyeq {\int }_{\mu }^{\upsilon }\frac{\stackrel{\sim }{\mathfrak{G}}\left(\varpi \right)}{{\varpi }^{2}}\Omega \left(\varpi \right)d\varpi \)

$$\preccurlyeq \frac{\stackrel{\sim }{\mathfrak{G}}\left(\mu \right) \stackrel{\sim }{+} \stackrel{\sim }{\mathfrak{G}}\left(\upsilon \right)}{2}{\int }_{\mu }^{\upsilon }\frac{\Omega \left(\varpi \right)}{{\varpi }^{2}}d\varpi .$$

On fixing \(\mathsf{h}\left(\varsigma \right)=\varsigma \) and \(\Omega \left(\varpi \right)=1\), the inequality (21) is obtained.

On fixing \(\mathsf{h}\left(\varsigma \right)=\varsigma \), \(\Omega \left(\varpi \right)=1\) and \(\alpha =1\), the following HH inequality is obtained:

$$\stackrel{\sim }{\mathfrak{G}}\left(\frac{2\mu \upsilon }{\mu +\upsilon }\right)\preccurlyeq \frac{\mu \upsilon }{\upsilon -\mu } {\int }_{\mu }^{\upsilon }\frac{\stackrel{\sim }{\mathfrak{G}}\left(\varpi \right)}{{\varpi }^{2}}d\varpi \preccurlyeq \frac{\stackrel{\sim }{\mathfrak{G}}\left(\mu \right) \stackrel{\sim }{+} \stackrel{\sim }{\mathfrak{G}}\left(\upsilon \right)}{2}.$$

4 Conclusion and Future Study

This study introduced the ℋ − -convex FIVFs, a new family of harmonically convex functions. We discovered a link between Riemann–Liouville fractional integral inequalities with FIs and ℋ − -convex FIVFs. Furthermore, as applications of ℋ − -convex FIVFs and Riemann–Liouville fractional integral inequalities, we derived certain previously defined and novel specific instances. In the future, we will use generalized interval and FI Riemann–Liouville fractional operators to investigate this concept for generalized ℋ − -convex interval-valued and FIVFs.