Skip to main content
Log in

Origami-Kirigami Structures and Its Applications in Biomedical Devices

  • Review
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

Biological structures, spanning the spectrum from cells to multicellular organisms, organs, and the human body, exhibit exquisite hierarchical precision in three dimensions. Modern biomedicine necessitates precise detection and manipulation on the surfaces of organisms with complex morphology. The assembly of medical devices into three-dimensional structures requires a complex design and preparation process. Origami and Kirigami, rooted in historical craftsmanship, provide a viable solution to the challenges posed by the intricate world of biomedical engineering. Through simple geometric design, these traditional arts can impart novel mechanical properties, including but not limited to precise 3D deformation, hyper-stretching capabilities, and the creation of multistable structures. Origami and Kirigami designs present innovative opportunities for the high-volume assembly of 3D bio-integrated systems. This review aims to summarize and highlight the advantages offered by Origami and Kirigami design in biomedical engineering. Specifically, we will delve into their applications in diverse areas such as biosensing, scaffolds, medical instruments, and bioassembly. By elucidating these applications, we intend to underscore the versatility and transformative potential these traditional arts bring to the forefront of cutting-edge biomedical technologies. Lastly, we will discuss the challenges and future perspectives of origami and Kirigami design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2018 Wiley. Microfluidics. Microfluidics. Reprinted with permission from Ref. [16]. Copyright 2014 ACS Publication. Cell Culture Stents. Reprinted with permission from Ref. [17]. Copyright 2023 Springer Nature. Bone stents. Reprinted with permission from Ref. [18]. Copyright 2020 Elsevier. Manipulators. Reprinted with permission from Ref. [19]. Copyright 2020 Springer Nature. Robots. Reprinted with permission from Ref. [20]. Copyright 2022 Springer Nature. DNA Origami. Reprinted with permission from Ref. [21]. Copyright 2006 Springer Nature. Molecular Origami. Reprinted with permission from Ref. [22]. Copyright 2018 AAAS

Fig. 2

Copyright 2018 Wiley. b A 3D clamp platform that gently wraps and mechanically constrains organoids in ways that facilitate mechanical evaluations without damage. Reprinted with permission from Ref. [38]. Copyright 2021 Wiley. c FET probe that can be inserted into a single cell. Reprinted with permission from Ref. [43]. Copyright 2010 AAAS d Strain-insensitive graphene-based stretchable electrode with a Kirigami structure. Reprinted with permission from Ref. [44]. Copyright 2020 Elsevier

Fig. 3

Copyright 2011 ACS Publication. b Capillary force-assembly microfluidic device. Reprinted with permission from Ref. [49]. Copyright 2017 Wiley

Fig. 4

Copyright 2023 Springer Nature. b Bilayer hydrogel system for the simultaneous cultivation of epithelial and fibroblast cells. Reprinted with permission from Ref. [56]. Copyright 2023 Wiley. c Origami stent. Reprinted with permission from Ref. [57]. Copyright 2006 Elsevier. d The Bioadhesive patch folded into a triangular sleeve and then adhered the patch to the inside of the trachea and esophagus in conjunction with a balloon catheter. Reprinted with permission from Ref. [58]. Copyright 2021 Wiley e Bone scaffolds. Reprinted with permission from Ref. [60]. Copyright 2018 RSC publishing. f Multistable bone scaffold using a Kirigami structure. Reprinted with permission from Ref. [18]. Copyright 2020 Elsevier

Fig. 5

Copyright 2015 ACS Publication. b A folding nanoinjector for injection into mouse zygotes. Reprinted with permission from Ref.[19]. Copyright 2020 Springer Nature. c magnetically driven amphibious origami micro-robot based on origami design. Reprinted with permission from Ref. [20]. Copyright 2022 Springer Nature. d soft manipulators. Reprinted with permission from Ref. [68]. Copyright 2023 Springer Nature

Fig. 6

Copyright 2006 Springer Nature. c A DNA box. Reprinted with permission from Ref.[72]. Copyright 2009 Springer Nature. d A three-dimensional DNA spherical shell. Reprinted with permission from Ref. [73]. Copyright 2011 AAAS. e A clamp using DNA origami to test molecular force. Reprinted with permission from Ref. [75]. Copyright 2016 AAAS. f The motor consists of two rigid DNA origami arms. Reprinted with permission from Ref. [76]. Copyright 2023 Springer Nature. g Synthesizing DNA nanoshells on cell membranes. Reprinted with permission from Ref. [78]. Copyright 2023 ACS Publication. h A glycan hairpin. Reprinted with permission from Ref. [80]. Copyright 2023 Springer Nature

Similar content being viewed by others

Data Availability

Manuscript has no associated data.

References

  1. D. Rus, M.T. Tolley, Design, fabrication and control of origami robots. Nat. Rev. Mater. 3(6), 101–112 (2018). https://doi.org/10.1038/s41578-018-0009-8

    Article  Google Scholar 

  2. A.K. Brooks, S. Chakravarty, M. Ali, V.K. Yadavalli, Kirigami-inspired biodesign for applications in healthcare. Adv. Mater. 34(18), 2109550 (2022). https://doi.org/10.1002/adma.202109550

    Article  CAS  Google Scholar 

  3. J.Y. Tao, H. Khosravi, V. Deshpande, S.Y. Li, Engineering by cuts: how kirigami principle enables unique mechanical properties and functionalities. Adv. Sci. 10(1), 2204733 (2023). https://doi.org/10.1002/advs.202204733

    Article  Google Scholar 

  4. C.A. Fairchild, Origami design secrets: mathematical methods for an ancient art. Libr. J. 129(3), 124 (2004)

    Google Scholar 

  5. E.D. Demaine, M.L. Demaine, J.S.B. Mitchell, Folding flat silhouettes and wrapping polyhedral packages: new results in computational origami. Comp. Geom. Theor. Appl. 16(1), 3–21 (2000). https://doi.org/10.1016/S0925-7721(99)00056-5

    Article  Google Scholar 

  6. L.A. Bowen, C.L. Grames, S.P. Magleby, L.L. Howell, R.J. Lang, A classification of action origami as systems of spherical mechanisms. J. Mech. Des. 135(11), 111008 (2013). https://doi.org/10.1115/1.4025379

    Article  Google Scholar 

  7. S.Y. Li, H.B. Fang, S. Sadeghi, P. Bhovad, K.W. Wang, Architected origami materials: how folding creates sophisticated mechanical properties. Adv. Mater. 31(5), 1805282 (2019). https://doi.org/10.1002/adma.201805282

    Article  CAS  Google Scholar 

  8. T. Chen, O.R. Bilal, R. Lang, C. Daraio, K. Shea, Autonomous deployment of a solar panel using elastic origami and distributed shape-memory-polymer actuators. Phys. Rev. Appl. 11(6), 064069 (2019). https://doi.org/10.1103/PhysRevApplied.11.064069

    Article  CAS  Google Scholar 

  9. M. Meloni, J.G. Cai, Q. Zhang, D.S.H. Lee, M. Li, R.J. Ma et al., Engineering origami: a comprehensive review of recent applications, design methods, and tools. Adv. Sci. 8(13), 2000636 (2021). https://doi.org/10.1002/advs.202000636

    Article  Google Scholar 

  10. M. Runciman, A. Darzi, G.P. Mylonas, Soft robotics in minimally invasive surgery. Soft Robot. 6(4), 423–443 (2019). https://doi.org/10.1089/soro.2018.0136

    Article  PubMed  PubMed Central  Google Scholar 

  11. C. Py, P. Reverdy, L. Doppler, J. Bico, B. Roman, C. Baroud, Capillary origami. Phys. Fluids (2007). https://doi.org/10.1063/1.2775288

    Article  Google Scholar 

  12. J.H. Cho, D.H. Gracias, Self-assembly of lithographically patterned nanoparticles. Nano Lett. 9(12), 4049–4052 (2009). https://doi.org/10.1021/nl9022176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A.J. Cui, Z. Liu, J.F. Li, T.H.H. Shen, X.X. Xia, Z.Y. Li et al., Directly patterned substrate-free plasmonic "nanograter’’ structures with unusual Fano resonances. Light-Sci. Appl. 4(7), e308 (2015). https://doi.org/10.1038/lsa.2015.81

    Article  CAS  Google Scholar 

  14. J.Z. Cui, T.Y. Huang, Z.C. Luo, P. Testa, H.R. Gu, X.Z. Chen et al., Nanomagnetic encoding of shape-morphing micromachines (vol 575, pg 164, 2019). Nature (2020). https://doi.org/10.1038/s41586-019-1888-6

    Article  PubMed  PubMed Central  Google Scholar 

  15. J. Cools, Q.R. Jin, E. Yoon, D.A. Burbano, Z.X. Luo, D. Cuypers et al., A micropatterned multielectrode shell for 3D spatiotemporal recording from live cells. Adv. Sci. 5(4), 1700731 (2018). https://doi.org/10.1002/advs.201700731

    Article  CAS  Google Scholar 

  16. C. Renault, M.J. Anderson, R.M. Crooks, Electrochemistry in hollow-channel paper analytical devices. J. Am. Chem. Soc. 136(12), 4616–4623 (2014). https://doi.org/10.1021/ja4118544

    Article  CAS  PubMed  Google Scholar 

  17. G.M. Rodriguez, D. Trueb, J. Köser, J. Schoelkopf, M. Gullo, An origami like 3D patterned cellulose-based scaffold for bioengineering cardiovascular applications. Cellulose 30(16), 10401–10412 (2023). https://doi.org/10.1007/s10570-023-05492-2

    Article  CAS  Google Scholar 

  18. F.S.L. Bobbert, S. Janbaz, T. van Manen, Y. Li, A.A. Zadpoor, Russian doll deployable meta-implants: fusion of kirigami, origami, and multi-stability. Mater. Des. 191, 108624 (2020). https://doi.org/10.1016/j.matdes.2020.108624

    Article  Google Scholar 

  19. H. Suzuki, R.J. Wood, Origami-inspired miniature manipulator for teleoperated microsurgery. Nat. Mach. Intell. 2(8), 437 (2020). https://doi.org/10.1038/s42256-020-0203-4

    Article  Google Scholar 

  20. Q.J. Ze, S. Wu, J.Z. Dai, S. Leanza, G. Ikeda, P.C. Yang et al., Spinning-enabled wireless amphibious origami millirobot. Nat. Commun. 13(1), 3118 (2022). https://doi.org/10.1038/s41467-022-30802-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. P.W.K. Rothemund, Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006). https://doi.org/10.1038/nature04586

    Article  CAS  PubMed  Google Scholar 

  22. D.D. Prabhu, K. Aratsu, Y. Kitamoto, H. Ouchi, T. Ohba, M.J. Hollamby et al., Self-folding of supramolecular polymers into bioinspired topology. Sci. Adv. 4(9), eaat8466 (2018). https://doi.org/10.1126/sciadv.aat8466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M. Mittelbrunn, F. Sánchez-Madrid, Intercellular communication: diverse structures for exchange of genetic information. Nat. Rev. Mol. Cell Bio. 13(5), 328–335 (2012). https://doi.org/10.1038/nrm3335

    Article  CAS  Google Scholar 

  24. A.M. Pappa, O. Parlak, G. Scheiblin, P. Mailley, A. Salleo, R.M. Owens, Organic electronics for point-of-care metabolite monitoring. Trends Biotechnol. 36(1), 45–59 (2018). https://doi.org/10.1016/j.tibtech.2017.10.022

    Article  CAS  PubMed  Google Scholar 

  25. T.F. Xiao, F. Wu, J. Hao, M.N. Zhang, P. Yu, L.Q. Mao, In vivo analysis with electrochemical sensors and biosensors. Anal. Chem. 89(1), 300–313 (2017). https://doi.org/10.1021/acs.analchem.6b04308

    Article  CAS  PubMed  Google Scholar 

  26. S.D. Wang, Y.D. Liu, A.W. Zhu, Y. Tian, In vivo electrochemical biosensors: recent advances in molecular design. Anal. Chem. 95(1), 388–406 (2023). https://doi.org/10.1021/acs.analchem.2c04541

    Article  CAS  PubMed  Google Scholar 

  27. L. Heinrich, D. Bennett, D. Ackerman, W. Park, J. Bogovic, N. Eckstein et al., Whole-cell organelle segmentation in volume electron microscopy. Nature 599(7883), 141 (2021). https://doi.org/10.1038/s41586-021-03977-3

    Article  CAS  PubMed  Google Scholar 

  28. C.S. Xu, S. Pang, G. Shtengel, A. Muller, A.T. Ritter, H.K. Hoffman et al., An open-access volume electron microscopy atlas of whole cells and tissues. Nature 599(7885), E5 (2021). https://doi.org/10.1038/s41586-021-04132-8

    Article  CAS  PubMed  Google Scholar 

  29. X.J. Duan, C.M. Lieber, Nanoelectronics meets biology: from new nanoscale devices for live-cell recording to 3D innervated tissues. Chem. Asian J. 8(10), 2304–2314 (2013). https://doi.org/10.1002/asia.201300630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. S. Li, H. Li, Y. Lu, M. Zhou, S. Jiang, X. Du et al., Advanced textile-based wearable biosensors for healthcare monitoring. Biosensors 13(10), 909 (2023). https://doi.org/10.3390/bios13100909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Z.C. Zhang, J.F. Ou, W. Li, A. Amirfazli, Folding characteristics of membranes in capillary origami. J. Colloid Interface Sci. 630, 111–120 (2023). https://doi.org/10.1016/j.jcis.2022.10.046

    Article  CAS  PubMed  Google Scholar 

  32. X.H. Zhao, Y. Kim, Soft microbots programmed by nanomagnets. Nature 575(7781), 58 (2019). https://doi.org/10.1038/d41586-019-03363-0

    Article  CAS  PubMed  Google Scholar 

  33. S. Lim, H.W. Luan, S.W. Zhao, Y.J. Lee, Y.H. Zhang, Y.G. Huang et al., Assembly of foldable 3D microstructures using graphene hinges. Adv. Mater. 32(28), 2001303 (2020). https://doi.org/10.1002/adma.202001303

    Article  CAS  Google Scholar 

  34. Q.R. Jin, M. Li, B. Polat, S.K. Paidi, A. Dai, A. Zhang et al., Mechanical trap surface-enhanced raman spectroscopy for three-dimensional surface molecular imaging of single live cells. Angew. Chem. Int. Edit. 56(14), 3822–3826 (2017). https://doi.org/10.1002/anie.201700695

    Article  CAS  Google Scholar 

  35. Y. Park, C.K. Franz, H. Ryu, H.W. Luan, K.Y. Cotton, J.U. Kim et al., Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids. Sci. Adv. 7(12), eabf9153 (2021). https://doi.org/10.1126/sciadv.abf9153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S. Xu, Z. Yan, K.I. Jang, W. Huang, H.R. Fu, J. Kim et al., Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347(6218), 154–159 (2015). https://doi.org/10.1126/science.1260960

    Article  CAS  PubMed  Google Scholar 

  37. Z. Yan, M.D. Han, Y. Shi, A. Badea, Y.Y. Yang, A. Kulkarni et al., Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots. Proc. Natl. Acad. Sci. USA 114(45), E9455–E9464 (2017). https://doi.org/10.1073/pnas.1713805114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. H. Ryu, Y. Park, H.W. Luan, G. Dalgin, K. Jeffris, H.J. Yoon et al., Transparent, compliant 3D mesostructures for precise evaluation of mechanical characteristics of organoids. Adv. Mater. 33(25), 2100026 (2021). https://doi.org/10.1002/adma.202100026

    Article  CAS  Google Scholar 

  39. D. Jäckel, D.J. Bakkum, T.L. Russell, J. Müller, M. Radivojevic, U. Frey et al., Combination of high-density microelectrode array and patch clamp recordings to enable studies of multisynaptic integration. Sci. Rep. UK 7(1), 978 (2017). https://doi.org/10.1038/s41598-017-00981-4

    Article  CAS  Google Scholar 

  40. Y. Cao, K. Zhang, Z. Huang, S. Li, A unique and robust physically unclonable function based on bionic tunable ion gel-gated synaptic transistors. IEEE Electr. Device Lett. (2023). https://doi.org/10.1109/LED.2023.3322165

    Article  Google Scholar 

  41. J. Gao, C.Y. Liao, S.J. Liu, T. Xia, G.B. Jiang, Nanotechnology: new opportunities for the development of patch-clamps. J. Nanobiotechnol. 19(1), 97 (2021). https://doi.org/10.1186/s12951-021-00841-4

    Article  Google Scholar 

  42. J. Abbott, T.Y. Ye, D. Ham, H. Park, Optimizing nanoelectrode arrays for scalable intracellular electrophysiology. Acc. Chem. Res. 51(3), 600–608 (2018). https://doi.org/10.1021/acs.accounts.7b00519

    Article  CAS  PubMed  Google Scholar 

  43. B.Z. Tian, T. Cohen-Karni, Q. Qing, X.J. Duan, P. Xie, C.M. Lieber, Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329(5993), 830–834 (2010). https://doi.org/10.1126/science.1192033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. K. Yong, S. De, E.Y. Hsieh, J. Leem, N.R. Aluru, S. Nam, Kirigami-inspired strain-insensitive sensors based on atomically-thin materials. Mater. Today 34, 58–65 (2020). https://doi.org/10.1016/j.mattod.2019.08.013

    Article  CAS  Google Scholar 

  45. E.K. Sackmann, A.L. Fulton, D.J. Beebe, The present and future role of microfluidics in biomedical research. Nature 507(7491), 181–189 (2014). https://doi.org/10.1038/nature13118

    Article  CAS  PubMed  Google Scholar 

  46. S. Battat, D.A. Weitz, G.M. Whitesides, An outlook on microfluidics: the promise and the challenge. Lab Chip 22(3), 530–536 (2022). https://doi.org/10.1039/d1lc00731a

    Article  CAS  PubMed  Google Scholar 

  47. F. Lan, B. Demaree, N. Ahmed, A.R. Abate, Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat. Biotechnol. 35(7), 640 (2017). https://doi.org/10.1038/nbt.3880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. H. Liu, R.M. Crooks, Three-dimensional paper microfluidic devices assembled using the principles of origami. J. Am. Chem. Soc. 133(44), 17564–17566 (2011). https://doi.org/10.1021/ja2071779

    Article  CAS  PubMed  Google Scholar 

  49. Z.X. Lao, Y.L. Hu, D. Pan, R.Y. Wang, C.C. Zhang, J.C. Ni et al., Self-sealed bionic long microchannels with thin walls and designable nanoholes prepared by line-contact capillary-force assembly. Small 13(23), 1603957 (2017). https://doi.org/10.1002/smll.201603957

    Article  CAS  Google Scholar 

  50. A.R. Ahmed, O.C. Gauntlett, G. Camci-Unal, Origami-inspired approaches for biomedical applications. ACS Omega 6(1), 46–54 (2021). https://doi.org/10.1021/acsomega.0c05275

    Article  CAS  PubMed  Google Scholar 

  51. A. Abbott, Cell culture: biology’s new dimension. Nature 424(6951), 870–872 (2003). https://doi.org/10.1038/424870a

    Article  CAS  PubMed  Google Scholar 

  52. L. Moroni, J.A. Burdick, C. Highley, S.J. Lee, Y. Morimoto, S. Takeuchi et al., Biofabrication strategies for 3D in vitro models and regenerative medicine (vol 3, pg 21, 2018). Nat. Rev. Mater. (2018). https://doi.org/10.1038/s41578-018-0020-01

    Article  PubMed  PubMed Central  Google Scholar 

  53. E. Cukierman, R. Pankov, D.R. Stevens, K.M. Yamada, Taking cell-matrix adhesions to the third dimension. Science 294(5547), 1708–1712 (2001). https://doi.org/10.1126/science.1064829

    Article  CAS  PubMed  Google Scholar 

  54. M. Montgomery, S. Ahadian, L.D. Huyer, M. Lo Rito, R.A. Civitarese, R.D. Vanderlaan et al., Flexible shape-memory scaffold for minimally invasive delivery of functional tissues. Nat. Mater. 16(10), 1038 (2017). https://doi.org/10.1038/Nmat4956

    Article  CAS  PubMed  Google Scholar 

  55. M.R. Visetsouk, E.J. Falat, R.J. Garde, J.L. Wendlick, J.H. Gutzman, Basal epithelial tissue folding is mediated by differential regulation of microtubules. Development 145(22), dev167031 (2018). https://doi.org/10.1242/dev.167031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. A. Roy, Z.H. Zhang, M.K. Eiken, A.L. Shi, A. Pena-Francesch, C. Loebel, Programmable tissue folding patterns in structured hydrogels. Adv. Mater. (2023). https://doi.org/10.1002/adma.202300017

    Article  PubMed  Google Scholar 

  57. K. Kuribayashi, K. Tsuchiya, Z. You, D. Tomus, M. Umemoto, T. Ito et al., Self-deployable stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Mater. Sci. Eng. A-Struct. 419(1–2), 131–137 (2006). https://doi.org/10.1016/j.msea.2005.12.016

    Article  CAS  Google Scholar 

  58. S.J. Wu, H. Yuk, J.J. Wu, C.S. Nabzdyk, X.H. Zhao, A multifunctional origami patch for minimally invasive tissue sealing. Adv. Mater. 33(11), 2007667 (2021). https://doi.org/10.1002/adma.202007667

    Article  CAS  Google Scholar 

  59. X. Mei, D.S. Zhu, J.L. Li, K. Huang, S.Q. Hu, Z.H. Li et al., A fluid-powered refillable origami heart pouch for minimally invasive delivery of cell therapies in rats and pigs. Med-Cambridge 2(11), 1253 (2021). https://doi.org/10.1016/j.medj.2021.10.001

    Article  CAS  Google Scholar 

  60. F.S.L. Bobbert, S. Janbaz, A.A. Zadpoor, Towards deployable meta-implants. J. Mater. Chem. B 6(21), 3449–3455 (2018). https://doi.org/10.1039/c8tb00576a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. G. Camci-Unal, A. Laromaine, E. Hong, R. Derda, G.M. Whitesides, Biomineralization guided by paper templates. Sci. Rep.-UK (2016). https://doi.org/10.1038/srep27693

    Article  Google Scholar 

  62. Y.M. Huang, V. Fitzpatrick, N. Zheng, R. Cheng, H.Y. Huang, C. Ghezzi et al., Self-folding 3D silk biomaterial rolls to facilitate axon and bone regeneration. Adv. Healthc. Mater. (2020). https://doi.org/10.1002/adhm.202000530

    Article  PubMed  PubMed Central  Google Scholar 

  63. J.C. Breger, C. Yoon, R. Xiao, H.R. Kwag, M.O. Wang, J.P. Fisher et al., Self-folding thermo-magnetically responsive soft microgrippers. Acs Appl. Mater. Inter. 7(5), 3398–3405 (2015). https://doi.org/10.1021/am508621s

    Article  CAS  Google Scholar 

  64. Q.T. Aten, B.D. Jensen, S.H. Burnett, L.L. Howell, A self-reconfiguring metamorphic nanoinjector for injection into mouse zygotes. Rev. Sci. Instrum. (2014). https://doi.org/10.1063/1.4872077

    Article  PubMed  Google Scholar 

  65. M. Sitti, H. Ceylan, W.Q. Hu, J. Giltinan, M. Turan, S. Yim et al., Biomedical applications of untethered mobile milli/microrobots. Proc. IEEE 103(2), 205–224 (2015). https://doi.org/10.1109/Jproc.2014.2385105

    Article  CAS  Google Scholar 

  66. Q.J. Ze, S. Wu, J. Nishikawa, J.Z. Dai, Y. Sun, S. Leanza et al., Soft robotic origami crawler. Sci. Adv. (2022). https://doi.org/10.1126/sciadv.abm7834

    Article  PubMed  PubMed Central  Google Scholar 

  67. L.S. Novelino, Q.J. Ze, S. Wu, G.H. Paulino, R.K. Zhao, Untethered control of functional origami microrobots with distributed actuation. Proc. Natl. Acad. Sci. U.S.A. 117(39), 24096–24101 (2020). https://doi.org/10.1073/pnas.2013292117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. H.R. Gu, M. Möckli, C. Ehmke, M. Kim, M. Wieland, S. Moser et al., Self-folding soft-robotic chains with reconfigurable shapes and functionalities. Nat. Commun. 14(1), 1263 (2023). https://doi.org/10.1038/s41467-023-36819-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. T. Li, X.M. Lu, M.R. Zhang, K. Hu, Z. Li, Peptide-based nanomaterials: self-assembly, properties and applications. Bioact. Mater. 11, 268–282 (2022). https://doi.org/10.1016/j.bioactmat.2021.09.029

    Article  CAS  PubMed  Google Scholar 

  70. M. Abbas, Q.L. Zou, S.K. Li, X.H. Yan, Self-assembled peptide- and protein-based nanomaterials for antitumor photodynamic and photothermal therapy. Adv. Mater. (2017). https://doi.org/10.1002/adma.201605021

    Article  PubMed  Google Scholar 

  71. Y.T. Zhang, R.M. Malamakal, D.M. Chenoweth, A single stereodynamic center modulates the rate of self-assembly in a biomolecular system. Angew. Chem. Int. Edit. 54(37), 10826–10832 (2015). https://doi.org/10.1002/anie.201504459

    Article  CAS  Google Scholar 

  72. E.S. Andersen, M. Dong, M.M. Nielsen, K. Jahn, R. Subramani, W. Mamdouh et al., Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459(7243), 73-U5 (2009). https://doi.org/10.1038/nature07971

    Article  CAS  PubMed  Google Scholar 

  73. D.R. Han, S. Pal, J. Nangreave, Z.T. Deng, Y. Liu, H. Yan, DNA origami with complex curvatures in three-dimensional space. Science 332(6027), 342–6 (2011). https://doi.org/10.1126/science.1202998

    Article  CAS  PubMed  Google Scholar 

  74. S.M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf, W.M. Shih, Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245), 414–8 (2009). https://doi.org/10.1038/nature08016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. P.C. Nickels, B. Wünsch, P. Holzmeister, W. Bae, L.M. Kneer, D. Grohmann et al., Molecular force spectroscopy with a DNA origami-based nanoscopic force clamp. Science 354(6310), 305–7 (2016). https://doi.org/10.1126/science.aah5974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. M. Centola, E. Poppleton, S. Ray, M. Centola, R. Welty, J. Valero et al., A rhythmically pulsing leaf-spring DNA-origami nanoengine that drives a passive follower. Nat. Nanotechnol. (2023). https://doi.org/10.1038/s41565-023-01516-x

    Article  PubMed  PubMed Central  Google Scholar 

  77. W. Siti, H.L. Too, T. Anderson, X.R. Liu, I.Y. Loh, Z.S. Wang, Autonomous DNA molecular motor tailor-designed to navigate DNA origami surface for fast complex motion and advanced nanorobotics. Sci. Adv. 9(38), eadi8444 (2023). https://doi.org/10.1126/sciadv.adi8444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. W.T. Wang, P.R. Hayes, X. Ren, R.E. Taylor, Synthetic cell armor made of DNA origami. Nano Lett. 23(15), 7076–85 (2023). https://doi.org/10.1021/acs.nanolett.3c01878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. I. Seitz, S. Saarinen, E.P. Kumpula, D. McNeale, E. Anaya-Plaza, V. Lampinen et al., DNA-origami-directed virus capsid polymorphism. Nat. Nanotechnol. 18(10), 1205 (2023). https://doi.org/10.1038/s41565-023-01443-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. G. Fittolani, T. Tyrikos-Ergas, A. Poveda, Y. Yu, N. Yadav, P.H. Seeberger et al., Synthesis of a glycan hairpin. Nat. Chem. 15(10), 1461 (2023). https://doi.org/10.1038/s41557-023-01255-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China under Grant No. 2021YFA1401103; The National Science Fund for Distinguished Young Scholars under Grant No. 61825403; The National Natural Science Foundation of China under Grants No. 61921005 and 61674078.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingming Pan or Lijia Pan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Guo, X., Pan, X. et al. Origami-Kirigami Structures and Its Applications in Biomedical Devices. Biomedical Materials & Devices (2024). https://doi.org/10.1007/s44174-024-00168-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44174-024-00168-2

Keywords

Navigation