Skip to main content

Advertisement

Log in

Multifaceted Applications of Solid Lipid: A Comprehensive Review

  • Review
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

Lipids originate from plant and animal sources and have significant roles in various fields, like pharmaceuticals, cosmetics, food, paint, leather, agriculture, microfluidics, and oil industries. Over the years, with the development of technology, different types of lipids have been synthesized or extracted and have been used based on their industrial need. Lipids are heterogeneous group of compounds related to fatty acids and are insoluble in water but soluble in organic solvents. One category of lipids with great importance is of solid lipids. Solid lipids are a type of lipids that remain solid at ambient temperature. In the past, lipids were obtained from natural sources and they were mainly used as bulking agents or bases for different types of dosage forms. In due course of time, after industrialization, lipids evolved and gained more significance. Solid lipids have their importance in drug targeting and controlled drug delivery as release rate modifiers, solubilizers, stabilizers, and permeation enhancers for improved biopharmaceutical performance of drugs. These are also popular for their diversified applications in various industries as mentioned above. In this review, the authors have selected some of the popular solid lipids like Stearic acid, Compritol®ATO 888, Precirol®ATO 5, Glyceryl Monostearate, Witepsol®, Carnauba wax, Softisan®, Cholesterol, Dynasan®, and Cetyl palmitate and discussed about their properties and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AACC:

American Association of Ceral Chemist

BA:

Bioavailability

CLC:

Cholesterol-loaded cyclodextrin

CR:

Controlled release

DCS:

Differential centrifugal sedimentation

DDAB:

Di-decyl dimethyl ammonium bromide

DP:

Average particle diameter

DTE:

Drug targeting efficiency

DTP:

Direct transport percentage

EE:

Entrapment efficiency

GLP:

Glucagon-like peptide

GO:

Ginger oil

GSE:

Grape seed oil

GWPU:

GMS-modified waterborne polyurethane

HTC:

High-temperature cooling

LBF:

Lipid-based formulations

LDE:

Cholesterol-rich emulsion

MERS-COV:

Middle east respiratory syndrome coronavirus

MNLC:

Magnetic nanostructured lipid carrier

NE:

Nano-emulsion

NLC:

Nanostructured lipid carrier

PCM:

Phase change material

PDI:

Poly dispersity index

PIT:

Phase inversion temperature

PLGA:

Poly lactic-co-glycolic acid

PS:

Particle size

Psi:

Porous silicon

PSO:

Pumpkin seed oil

QESD:

Quasi-emulsion solvent diffusion

SLM:

Solid lipid microparticles

SLN:

Solid lipid nanoparticles

SLPHN:

Solid lipid-polymer hybrid nanoparticles

SPF:

Sun protective factor

SPION:

Super paramagnetic iron oxide nanoparticles

SR:

Sustained release

THC:

Tetrahydrocurcumin

ZP:

Zetapotential

References

  1. L. Allen, H.C. Ansel, Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems (Lippincott Williams & Wilkins, 2013)

  2. M.N. Pastore et al., Transdermal patches: History, development and pharmacology. Br. J. Pharmacol. 172(9), 2179–2209 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. D.E. Vance, J.E. Vance, Biochemistry of Lipids, Lipoproteins and Membranes, Vol. 36 (Elsevier, 2002)

  4. R. Malothu, Fatty acids extraction from algae-Chlorella Vulgaris. Int. J. Eng. Res. Technol. 9(7), 171–178 (2020)

    Google Scholar 

  5. H. Shrestha, R. Bala, S. Arora, Lipid-based drug delivery systems. J. Pharm. 2014 (2014)

  6. K. Marsden, Some notes on textile and non‐textile applications of fatty acids. Ind. Lubric. Tribol. 20(2), 57–59 (1968)

  7. E. Mocé et al., Use of cholesterol in sperm cryopreservation: Present moment and perspectives to future. Reprod. Domest. Anim. 45, 57–66 (2010)

    Article  PubMed  Google Scholar 

  8. R. Kesharwani, D.K. Patel, P.K. Yadav, Bioavailability enhancement of repaglinide using nano lipid carrier: Preparation characterization and in vivo evaluation. Int. J. Appl. Pharm. 14(5), 181–189 (2022)

    Article  CAS  Google Scholar 

  9. D.K. Patel et al., Topical nanostructured lipid carrier (Nlc) gel of etodolac: Central composite design, optimization, in vitro skin penetration and dermatokinetic study. Lat. Am. J. Pharm. 40(10), 2487–2497 (2021)

    CAS  Google Scholar 

  10. D.K. Patel, R. Kesharwani, V. Kumar, Etodolac loaded solid lipid nanoparticle based topical gel for enhanced skin delivery. Biocatal. Agric. Biotechnol. 29, 101810 (2020)

    Article  Google Scholar 

  11. H.O. Ammar et al., Characterization, cellular uptake in Caco-2 cells and physiologically based pharmacokinetic modeling of baicalin-loaded solid lipid nanoparticles. Future J. Pharm. Sci. 9(1), 61 (2023)

    Article  ADS  Google Scholar 

  12. S. Jagdale et al., GLUT1 transporter-facilitated solid lipid nanoparticles loaded with anti-cancer therapeutics for ovarian cancer targeting. Int. J. Pharm. 637, 122894 (2023)

    Article  PubMed  CAS  Google Scholar 

  13. A. Nautiyal, S. Wairkar, A reduced dose of Azelaic acid-loaded solid lipid nanoparticles for treatment of hyperpigmentation: In vitro characterization and cell line studies. J. Drug Deliv. Sci. Technol. 80, 104158 (2023)

    Article  CAS  Google Scholar 

  14. M.H. Tabrizi, M. Soltani, A. Es-haghi, Preparation and characterization of the farnesiferol C-loaded solid lipid nanoparticles decorated with folic acid-bound chitosan and evaluation of its in vitro anti-cancer and anti-angiogenic activities. J. Mol. Liq. 382, 121908 (2023)

    Article  Google Scholar 

  15. L. Talarico et al., Design and optimization of solid lipid nanoparticles loaded with triamcinolone acetonide. Molecules 28(15), 5747 (2023)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. M.H. Teaima et al., Lyophilized nasal inserts of atomoxetine HCl solid lipid nanoparticles for brain targeting as a treatment of Attention-Deficit/Hyperactivity Disorder (ADHD): A pharmacokinetics study on rats. Pharmaceuticals 16(2), 326 (2023)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. S. Trombino et al., Solid lipid nanoparticles hydroquinone-based for the treatment of melanoma: Efficacy and safety studies. Pharmaceutics 15(5), 1375 (2023)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. J. Yallavula, K. Mandava, V. Madhav, Design and evaluation of topical gel containing solid-lipid nanoparticles loaded with luliconazole. Int. J. Pharm. Res. Technol (IJPRT) 13(2), 52–64 (2023)

  19. M. Zaman et al., Application of nanoprecipitation technique to develop poloxamer-407 facilitated solid lipid nanoparticles for the controlled delivery of tacrolimus. Int. J. Polym. Sci. 2023 (2023)

  20. D. Patel et al., Nanostructured lipid carriers (NLC)-based gel for the topical delivery of aceclofenac: Preparation, characterization, and in vivo evaluation. Sci. Pharm. 80(3), 749–764 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Y. Si, Z. Guo, W. Liu, A robust epoxy resins@ stearic acid-Mg (OH) 2 micronanosheet superhydrophobic omnipotent protective coating for real-life applications. ACS Appl. Mater. Interfaces. 8(25), 16511–16520 (2016)

    Article  PubMed  CAS  Google Scholar 

  22. S.M. Ibrahim, Preparation, characterization and application of novel surface-modified ZrSnO4 as Sn-based TMOs catalysts for the stearic acid esterification with methanol to biodiesel. Renew. Energy 173, 151–163 (2021)

    Article  CAS  Google Scholar 

  23. Y. Yuan et al., Investigation on thermal properties of capric–palmitic–stearic acid/activated carbon composite phase change materials for high-temperature cooling application. J. Therm. Anal. Calorim. 124, 881–888 (2016)

    Article  CAS  Google Scholar 

  24. S. Fan et al., Shape-stabilized phase change materials based on stearic acid and mesoporous hollow SiO2 microspheres (SA/SiO2) for thermal energy storage. Eur. J. Inorg. Chem. 2017(14), 2138–2143 (2017)

    Article  CAS  Google Scholar 

  25. R. Singhal et al., Immobilization of urease on poly (N-vinyl carbazole)/stearic acid Langmuir-Blodgett films for application to urea biosensor. Biosens. Bioelectron. 17(8), 697–703 (2002)

    Article  PubMed  CAS  Google Scholar 

  26. B. Lara-Hernández, A. Hernández-León, L. Villafuerte-Robles, Effect of stearic acid on the properties of metronidazole/methocel K4M floating matrices. Braz. J. Pharm. Sci. 45, 497–505 (2009)

    Article  Google Scholar 

  27. H.M. Alhelal et al., Solid lipid nanoparticles embedded hydrogels as a promising carrier for retarding irritation of leflunomide. Gels 9(7), 576 (2023)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. S.Z. Alshawwa et al., Solid Lipid Lyo-Nanosuspension: A promising stabilized oral delivery system for the antihyperglycemic extract of Mistletoe Plicosepalus acacia. Saudi Pharm. J. (2023)

  29. F. De Gaetano et al., Solid lipid nanoparticles containing morin: Preparation, characterization, and ex vivo permeation studies. Pharmaceutics 15(6), 1605 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  30. A. Rosa et al., Impact of solid lipid nanoparticles on 3T3 fibroblasts viability and lipid profile: The effect of curcumin and resveratrol loading. J. Appl. Toxicol. 43(2), 272–286 (2023)

    Article  PubMed  CAS  Google Scholar 

  31. N. Sharma et al., Blending ethnomedicine with modern technology—From conventional to tailored products: Modulating biopharmaceutical properties of berberis extract by solid lipid nanoparticles for wound healing. Journal of Functional Biomaterials 14(8), 418 (2023)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. M.M. de Araujo et al., Solid lipid–polymer hybrid nanoplatform for topical delivery of siRNA: In vitro biological activity and permeation studies. J. Funct. Biomater. 14(7), 374 (2023)

  33. Q. Xia et al., Nanostructured lipid carriers as novel carrier for sunscreen formulations. Int. J. Cosmet. Sci. 29(6), 473–482 (2007)

    Article  PubMed  CAS  Google Scholar 

  34. M. Roberts et al., Development and evaluation of sustained-release Compritol® 888 ATO matrix mini-tablets. Drug Dev. Ind. Pharm. 38(9), 1068–1076 (2012)

    Article  PubMed  CAS  Google Scholar 

  35. M.Y. Zakaria et al., Inclusion of a phytomedicinal flavonoid in biocompatible surface-modified chylomicron mimic nanovesicles with improved oral bioavailability and virucidal activity: Molecular modeling and pharmacodynamic studies. Pharmaceutics 14(5), 905 (2022)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. P. Barthelemy et al., Compritol® 888 ATO: An innovative hot-melt coating agent for prolonged-release drug formulations. Eur. J. Pharm. Biopharm. 47(1), 87–90 (1999)

    Article  PubMed  CAS  Google Scholar 

  37. M.N. Gambhire et al., Development and in vitro evaluation of an oral floating matrix tablet formulation of diltiazem hydrochloride. AAPS PharmSciTech 8, E166–E174 (2007)

    Article  PubMed Central  Google Scholar 

  38. B. Uner et al., Loteprednol-loaded nanoformulations for corneal delivery by quality-by-design concepts: Optimization, characterization, and anti-inflammatory activity. AAPS PharmSciTech 24(4), 92 (2023)

    Article  PubMed  CAS  Google Scholar 

  39. A.H. Idris et al., Nanostructured lipid carrier co-loaded with docetaxel and magnetic nanoparticles: Physicochemical characterization and in vitro evaluation. Pharmaceutics 15(5), 1319 (2023)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. J. Hamdani, A.J. Moës, K. Amighi, Physical and thermal characterisation of Precirol® and Compritol® as lipophilic glycerides used for the preparation of controlled-release matrix pellets. Int. J. Pharm. 260(1), 47–57 (2003)

    Article  PubMed  CAS  Google Scholar 

  41. A. Unnisa et al., Nanostructured lipid carriers to enhance the bioavailability and solubility of ranolazine: Statistical optimization and pharmacological evaluations. Pharmaceuticals 16(8), 1151 (2023)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. M.I. Teixeira et al., Riluzole-loaded lipid nanoparticles for brain delivery: Preparation, optimization and characterization. J. Mol. Liquids, 122749 (2023)

  43. L. Sahoo et al., In vitro and in vivo characterization of transdermal patch loaded with nanostructured lipid carrier for bioavailability enhancement of dolutegravir sodium using Taguchi and Box-Behnken Design. BioNanoScience, 1–18 (2023)

  44. P. Kumari, S. Dang, Dual drug loaded nanostructured lipid carrier for cytotoxic effect against breast cancer-a drug repurposing approach. Surf. Interf. 40, 103138 (2023)

    Article  CAS  Google Scholar 

  45. R. Jaiswal, R. Wadetwar, Nanostructured lipid carriers mediated transdermal delivery of trandolapril as an impeccable therapeutic approach against hypertension: Development, characterization and in vivo evaluation. OpenNano 11, 100144 (2023)

    Article  Google Scholar 

  46. S.D. Satyanarayana et al., Ocular delivery of bimatoprost-loaded solid lipid nanoparticles for effective management of glaucoma. Pharmaceuticals 16(7), 1001 (2023)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. A.M. Makky et al., A full factorial design to optimize aminexil nano lipid formulation to improve skin permeation and efficacy against alopecia. AAPS PharmSciTech 24(1), 40 (2023)

    Article  PubMed  CAS  Google Scholar 

  48. M.V. Fedorchak et al., Long term glaucoma drug delivery using a topically retained gel/microsphere eye drop. Sci. Rep. 7(1), 8639 (2017)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  49. X. Wang et al., Hot-melt sub-and outercoating combined with enteric aqueous coating to improve the stability of aspirin tablets. Asian J. Pharm. Sci. 12(3), 266–278 (2017)

  50. X. Liu et al., Novel waterborne polyurethanes containing long-chain alkanes: their synthesis and application to water repellency. RSC Adv. 9(54), 31357–31369 (2019)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  51. S.Y. Ghan et al., Palm olein organogelation using mixtures of soy lecithin and glyceryl monostearate. Gels 8(1), 30 (2022)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. W. Kriangkrai et al., Impact of anti-tacking agents on properties of gas-entrapped membrane and effervescent floating tablets. AAPS PharmSciTech 15, 1357–1369 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. K. Falade, K. Adeyanju, P. Uzo-Peters, Foam-mat drying of cowpea (Vigna unguiculata) using glyceryl monostearate and egg albumin as foaming agents. Eur. Food Res. Technol. 217, 486–491 (2003)

    Article  CAS  Google Scholar 

  54. A. Obinu et al., Solid lipid nanoparticles as formulative strategy to increase oral permeation of a molecule active in multidrug-resistant tuberculosis management. Pharmaceutics 12(12), 1132 (2020)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. A. Costa, B. Sarmento, V. Seabra, Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages. Eur. J. Pharm. Sci. 114, 103–113 (2018)

    Article  PubMed  CAS  Google Scholar 

  56. K. Vivek, H. Reddy, R.S. Murthy, Investigations of the effect of the lipid matrix on drug entrapment, in vitro release, and physical stability of olanzapine-loaded solid lipid nanoparticles. AAPS PharmSciTech 8, 16–24 (2007)

    Article  PubMed Central  Google Scholar 

  57. F. Araújo et al., The impact of nanoparticles on the mucosal translocation and transport of GLP-1 across the intestinal epithelium. Biomaterials 35(33), 9199–9207 (2014)

    Article  PubMed  Google Scholar 

  58. S.S. Marques et al., Combining orthogonal measurements to unveil diclofenac encapsulation into polymeric and lipid nanocarriers. Anal. Chim. Acta 1262, 341234 (2023)

    Article  PubMed  CAS  Google Scholar 

  59. Y.S. Ong et al., A multifunctional nanomedicine platform for co-delivery of methotrexate and mild hyperthermia towards breast cancer therapy. Mater. Sci. Eng., C 116, 111255 (2020)

    Article  CAS  Google Scholar 

  60. B. Sütő et al., Development of ibuprofen-loaded nanostructured lipid carrier-based gels: characterization and investigation of in vitro and in vivo penetration through the skin. Int. J. Nanomed., 1201–1212 (2016)

  61. M. Iwata et al., Release property of progesterone from a mixed-base suppository consisting of Witepsol® W35 and Witepsol® E85. Drug Dev. Ind. Pharm. 27(10), 1039–1045 (2001)

    Article  PubMed  CAS  Google Scholar 

  62. B.A. da Rocha et al., Antiinflammatory activity of carnauba wax microparticles containing curcumin. J. Drug Deliv. Sci. Technol. 59, 101918 (2020)

    Article  CAS  Google Scholar 

  63. M. Tabibiazar et al., Preparation and characterization of carnauba wax/adipic acid oleogel: A new reinforced oleogel for application in cake and beef burger. Food Chem. 333, 127446 (2020)

    Article  PubMed  Google Scholar 

  64. A.C. de Meneses et al., Encapsulation of clove oil in nanostructured lipid carriers from natural waxes: Preparation, characterization and in vitro evaluation of the cholinesterase enzymes. Colloids Surf., A 583, 123879 (2019)

    Article  Google Scholar 

  65. D. Nesseem, Formulation of sunscreens with enhancement sun protection factor response based on solid lipid nanoparticles. Int. J. Cosmet. Sci. 33(1), 70–79 (2011)

    Article  PubMed  CAS  Google Scholar 

  66. T.T.B. de Medeiros et al., Carnauba wax as a wall material for urea microencapsulation. J. Sci. Food Agric. 99(3), 1078–1087 (2019)

    Article  PubMed  Google Scholar 

  67. F. Qazi et al., Lipids bearing extruded-spheronized pellets for extended release of poorly soluble antiemetic agent—Meclizine HCl. Lipids Health Dis. 16(1), 1–16 (2017)

    Article  MathSciNet  Google Scholar 

  68. V. Nart et al., Carnauba wax as a promising excipient in melt granulation targeting the preparation of mini-tablets for sustained release of highly soluble drugs. Mater. Sci. Eng., C 70, 250–257 (2017)

    Article  CAS  Google Scholar 

  69. R.G. McGuire, Market quality of guavas after hot-water quarantine treatment and application of carnauba wax coating. HortScience 32(2), 271–274 (1997)

    Article  Google Scholar 

  70. L.K.S. Tan et al., Magnetic-guided targeted delivery of zerumbone/SPION co-loaded in nanostructured lipid carrier into breast cancer cells. J. Drug Deliv. Sci. Technol. 87, 104830 (2023)

    Article  CAS  Google Scholar 

  71. P. Nnamani et al., SRMS142-based solid lipid microparticles: application in oral delivery of glibenclamide to diabetic rats. Eur. J. Pharm. Biopharm. 76(1), 68–74 (2010)

    Article  PubMed  CAS  Google Scholar 

  72. E.C. Umeyor et al., Preparation of novel solid lipid microparticles loaded with gentamicin and its evaluation in vitro and in vivo. J. Microencapsul. 29(3), 296–307 (2012)

    Article  PubMed  CAS  Google Scholar 

  73. M.A. Momoh et al., A new lipid-based oral delivery system of erythromycin for prolong sustain release activity. Mater. Sci. Eng., C 97, 245–253 (2019)

    Article  CAS  Google Scholar 

  74. D. Algul et al., Preformulation, characterization, and in vitro release studies of caffeine-loaded solid lipid nanoparticles. J. Cosmet. Sci. 69(3), 165–173 (2018)

    PubMed  Google Scholar 

  75. E.A. Fouad, A.E.B. Yassin, H.N. Alajami, Characterization of celecoxib-loaded solid lipid nanoparticles formulated with tristearin and softisan 100. Trop. J. Pharm. Res. 14(2), 205–210 (2015)

    Article  CAS  Google Scholar 

  76. C. Cimino et al., Nanostructured lipid carrier for the ophthalmic delivery of haloperidol metabolite II valproate ester (±)-MRJF22: A potential strategy in the treatment of uveal melanoma. J. Drug Deliv. Sci. Technol. 87, 104811 (2023)

    Article  CAS  Google Scholar 

  77. S.V.K. Rompicharla et al., Formulation optimization, characterization, and evaluation of in vitro cytotoxic potential of curcumin loaded solid lipid nanoparticles for improved anticancer activity. Chem. Phys. Lipid. 208, 10–18 (2017)

    Article  CAS  Google Scholar 

  78. A. Shah et al., Advanced development of a non-ionic surfactant and cholesterol material based niosomal gel formulation for the topical delivery of anti-acne drugs. Mater. Adv. 1(6), 1763–1774 (2020)

    Article  CAS  Google Scholar 

  79. L. Reyderman, S. Stavchansky, Electrostatic spraying and its use in drug delivery—cholesterol microspheres. Int. J. Pharm. 124(1), 75–85 (1995)

    Article  CAS  Google Scholar 

  80. D.G. Rodrigues et al., Use of a cholesterol-rich emulsion that binds to low-density lipoprotein receptors as a vehicle for paclitaxel. J. Pharm. Pharmacol. 54(6), 765–772 (2002)

    Article  PubMed  CAS  Google Scholar 

  81. H. Salminen et al., Stabilization of solid lipid nanoparticles with glycyrrhizin. Eur. Food Res. Technol. 249(3), 787–798 (2023)

    Article  CAS  Google Scholar 

  82. A.M. Pluntze et al., Control of API release with matrix polymorphism in tristearin microspheres. Int. J. Pharm. 636, 122806 (2023)

    Article  PubMed  CAS  Google Scholar 

  83. S. Erickson et al., Effect of active pharmaceutical ingredient, lipid composition, and thermal processing on the physical stability of local anesthetic-loaded lipid microparticles. J. Pharm. Innov., 1–10 (2023)

  84. R. Thatipamula et al., Formulation and in vitro characterization of domperidone loaded solid lipid nanoparticles and nanostructured lipid carriers. Daru J. Fac. Pharm. Tehran Univ. Med. Sci. 19(1), 23 (2011)

  85. S. Wissing, R. Müller, Solid lipid nanoparticles as carrier for sunscreens: in vitro release and in vivo skin penetration. J. Control. Release 81(3), 225–233 (2002)

    Article  PubMed  CAS  Google Scholar 

  86. F. Sommonte et al., Microfluidic assembly of “turtle-like” shaped solid lipid nanoparticles for lysozyme delivery. Int. J. Pharm. 631, 122479 (2023)

    Article  PubMed  CAS  Google Scholar 

  87. C.M. Legner, G.L. Tylka, S. Pandey, Robotic agricultural instrument for automated extraction of nematode cysts and eggs from soil to improve integrated pest management. Sci. Rep. 11(1), 3212 (2021)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  88. P. Kongsuphol, K.B. Fang, Z. Ding, Lipid bilayer technologies in ion channel recordings and their potential in drug screening assay. Sens. Actuators, B Chem. 185, 530–542 (2013)

    Article  CAS  Google Scholar 

  89. D. Miley et al., Video capsule endoscopy and ingestible electronics: Emerging trends in sensors, circuits, materials, telemetry, optics, and rapid reading software. Adv. Devices Instrum. (2021)

  90. M. Trojanowicz, Miniaturized biochemical sensing devices based on planar bilayer lipid membranes. Fresenius J. Anal. Chem. 371, 246–260 (2001)

    Article  PubMed  CAS  Google Scholar 

  91. C. Pereira-Leite et al., Exploring stearic-acid-based nanoparticles for skin applications—Focusing on stability and cosmetic benefits. Cosmetics 10(4), 99 (2023)

    Article  CAS  Google Scholar 

  92. P. Wang et al., Stearic acid esterified pectin: Preparation, characterization, and application in edible hydrophobic pectin/chitosan composite films. Int. J. Biol. Macromol. 186, 528–534 (2021)

    Article  PubMed  CAS  Google Scholar 

  93. D. Santonocito et al., Development of solid lipid nanoparticles as dry powder: Characterization and formulation considerations. Molecules 28(4), 1545 (2023)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. A. Fini et al., Theophylline-loaded compritol microspheres prepared by ultrasound-assisted atomization. J. Pharm. Sci. 100(2), 743–757 (2011)

    Article  PubMed  CAS  Google Scholar 

  95. F.-Q. Li et al., In vitro controlled release of sodium ferulate from Compritol 888 ATO-based matrix tablets. Int. J. Pharm. 324(2), 152–157 (2006)

    Article  PubMed  CAS  Google Scholar 

  96. M.J. Alvarez-Figueroa et al., Design of chitosan nanocapsules with compritol 888 ATO® for imiquimod transdermal administration. Evaluation of their skin absorption by Raman microscopy. Pharm. Res. 37, 1–10 (2020)

  97. M. Beraza-Millor et al., Novel golden lipid nanoparticles with small interference ribonucleic acid for substrate reduction therapy in Fabry disease. Pharmaceutics 15(7), 1936 (2023)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. S. Attri et al., Assessment of anti-psoriatic activity of bakuchiol-loaded solid lipid nanoparticles-based gel: design, characterization, and mechanistic insight via NF-kB signaling pathway. Naunyn-Schmiedeberg’s Arch. Pharmacol., 1–21 (2023)

  99. G. Aceto et al., Dual delivery of ginger oil and hexylresorcinol with lipid nanoparticles for the effective treatment of cutaneous hyperpigmentation. J. Drug Deliv. Sci. Technol., 104790 (2023)

  100. A. Trapani et al., Solid lipid nanoparticles administering antioxidant grape seed-derived polyphenol compounds: A potential application in aquaculture. Molecules 27(2), 344 (2022)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. V. Jannin, E. Pochard, O. Chambin, Influence of poloxamers on the dissolution performance and stability of controlled-release formulations containing Precirol® ATO 5. Int. J. Pharm. 309(1–2), 6–15 (2006)

    Article  PubMed  CAS  Google Scholar 

  102. S.-Y. Lin, J.-Y. Cherng, Polymorphic transformation of indomethacin in precirol solid dispersion system. J. Therm. Anal. Calorim. 45(6), 1565–1577 (1995)

    Article  CAS  Google Scholar 

  103. K.-S. Kim, S.-J. Park, Influence of glyceryl palmitostearate on release behaviors of hydroxypropyl cellulose microcapsules containing indomethacin by W/O emulsion. Macromol. Res. 19, 1121–1126 (2011)

    Article  CAS  Google Scholar 

  104. J. Pietkiewicz, M. Sznitowska, The choice of lipids and surfactants for injectable extravenous microspheres. Die Pharm. Int. J. Pharm. Sci. 59(4), 325–326 (2004)

    CAS  Google Scholar 

  105. S. Yeo et al., Improved anticancer efficacy of methyl pyropheophorbide-a–incorporated solid lipid nanoparticles in photodynamic therapy. Sci. Rep. 13(1), 7391 (2023)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  106. S. Shrivastava, C.D. Kaur, Development of andrographolide-loaded solid lipid nanoparticles for lymphatic targeting: Formulation, optimization, characterization, in vitro, and in vivo evaluation. Drug Deliv. Transl. Res. 13(2), 658–674 (2023)

    Article  PubMed  CAS  Google Scholar 

  107. J.B. Sharma et al., Statistical optimization of tetrahydrocurcumin loaded solid lipid nanoparticles using box behnken design in the management of streptozotocin-induced diabetes mellitus. Saudi Pharm. J., 101727 (2023)

  108. S.E. Ramadan et al., Application of design of experiment in the optimization of apixaban-loaded solid lipid nanoparticles: In vitro and in vivo evaluation. AAPS PharmSciTech. 24(6), 167 (2023)

  109. F. Pervaiz et al., Fabrication of solid lipid nanoparticles-based patches of paroxetine and their ex-vivo permeation behaviour. Artif. Cells Nanomed. Biotechnol. 51(1), 108–119 (2023)

    Article  PubMed  CAS  Google Scholar 

  110. A. Krishnasailaja, A.S. Gazi, Formulation of methotrexate loaded solid lipid nanoparticles by micro emulsion technique. Curr. Nanomater. 8(2), 153–161 (2023)

    Article  CAS  Google Scholar 

  111. S. Konatham, S. Patangay, Abiraterone acetate loaded solid lipid nanoparticles for improved oral bioavailability: Design of experiments based formulation optimization, in vitro, ex-vivo and in vivo characterization. Int. J. Appl. Pharm. 15(2), 131–139 (2023)

  112. N.B. Chaudhari, A.G. Zalte, V.S. Gulecha, Formulation, optimization, characterization and in vitro-ex vivo evaluation of atorvastatin loaded solid lipid nanoparticles using quality by design approach. Res. J. Pharm. Technol. 16(3), 1433–1441 (2023)

    Article  Google Scholar 

  113. Q. Jiang, Z. Yu, Z. Meng, Double network oleogels co-stabilized by hydroxypropyl methylcellulose and monoglyceride crystals: Baking applications. Int. J. Biol. Macromol. 209, 180–187 (2022)

    Article  PubMed  CAS  Google Scholar 

  114. I.I. Andreadis et al., Exploring the use of modified in vitro digestion assays for the evaluation of ritonavir loaded solid lipid-based formulations. Eur. J. Pharm. Sci. 189, 106524 (2023)

    Article  PubMed  CAS  Google Scholar 

  115. C.C. Chu et al., Formulation and characterization of novel nanostructured lipid carriers with photoprotective properties made from carnauba wax, beeswax, pumpkin seed oil, and UV filters. J. Am. Oil. Chem. Soc. 97(5), 531–542 (2020)

    Article  CAS  Google Scholar 

  116. A.R. Madureira et al., Characterization of solid lipid nanoparticles produced with carnauba wax for rosmarinic acid oral delivery. RSC Adv. 5(29), 22665–22673 (2015)

    Article  ADS  CAS  Google Scholar 

  117. H. Yang, X. Li, G. Lu, Effect of carnauba wax–based coating containing glycerol monolaurate on decay and quality of sweet potato roots during storage. J. Food Prot. 81(10), 1643–1650 (2018)

    Article  PubMed  CAS  Google Scholar 

  118. L.K.S. Tan et al., Magnetic-guided targeted delivery of zerumbone/SPION Co-loaded in nanostructured lipid carrier into breast cancer cells. J. Drug Deliv. Sci. Technol., 104830 (2023)

  119. Z. Karimitabar et al., Use of the quantum dot-labeled solid lipid nanoparticles for delivery of streptomycin and hydroxychloroquine: A new therapeutic approach for treatment of intracellular Brucella abortus infection. Biomed. Pharmacother. 158, 114116 (2023)

    Article  PubMed  CAS  Google Scholar 

  120. C. Cimino et al., Nanostructured lipid carrier for the ophthalmic delivery of haloperidol metabolite II valproate ester (±)-MRJF22: A potential strategy in the treatment of uveal melanoma. J. Drug Deliv. Sci. Technol, 104811 (2023)

  121. T. Chantaburanan et al., Enhanced stability and skin permeation of ibuprofen-loaded solid lipid nanoparticles based binary solid lipid matrix: Effect of surfactant and lipid compositions. Int. J. Pharm. X, 100205 (2023)

  122. A. Bonaccorso et al., Sorafenib repurposing for ophthalmic delivery by lipid nanoparticles: A preliminary study. Pharmaceutics 13(11), 1956 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. M.I. Silva et al., Freeze-dried Softisan® 649-based lipid nanoparticles for enhanced skin delivery of cyclosporine A. Nanomaterials 10(5), 986 (2020)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. A. Leonardi et al., Cationic solid lipid nanoparticles enhance ocular hypotensive effect of melatonin in rabbit. Int. J. Pharm. 478(1), 180–186 (2015)

    Article  PubMed  CAS  Google Scholar 

  125. S.A. Chime et al., Sustained-release diclofenac potassium-loaded solid lipid microparticle based on solidified reverse micellar solution: In vitro and in vivo evaluation. J. Microencapsul. 30(4), 335–345 (2013)

    Article  PubMed  CAS  Google Scholar 

  126. D. Alukda, T. Sturgis, B.B.C. Youan, Formulation of tenofovir-loaded functionalized solid lipid nanoparticles intended for HIV prevention. J. Pharm. Sci. 100(8), 3345–3356 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. N. Swarnalatha, M. Vidyavathi, J.S. Rani, Design, characterization and optimization of solid lipid nanoparticles of bupropion by using 23 factorial design. Pharm. Chem. J., 1–13 (2023)

  128. A. Katopodi et al., Preparation and characterization of solid lipid nanoparticles incorporating bioactive coumarin analogues as photosensitizing agents. Colloids Surf. B 229, 113439 (2023)

    Article  CAS  Google Scholar 

  129. M. Dawoud et al., Comparative study on the performance of monoolein cubic nanoparticles and trimyristin solid lipid nanoparticles as carriers for docetaxel. Pharm. Dev. Technol. 28(3–4), 277–287 (2023)

    Article  PubMed  CAS  Google Scholar 

  130. J. Quan et al., Characterization of fucoxanthin-loaded microspheres composed of cetyl palmitate-based solid lipid core and fish gelatin–gum Arabic coacervate shell. Food Res. Int. 50(1), 31–37 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kartikesh Sahu.

Ethics declarations

Data Availability

The data and materials used in this study are available upon request.

Consent for Publications

Each author in this manuscript has given permission for this work to be published.

Conflict of Interests

The authors declare that there are no conflicts of interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, C.N., Sahu, K., Singha, R. et al. Multifaceted Applications of Solid Lipid: A Comprehensive Review. Biomedical Materials & Devices (2024). https://doi.org/10.1007/s44174-023-00153-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44174-023-00153-1

Keywords

Navigation