Skip to main content
Log in

Dynamic Headspace GC–MS Method to Detect Volatile Extractables from Medical Device Materials

  • Original Article
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

This study addresses the critical issue of detecting volatile extractables released during the clinical use of medical devices which can pose a serious threat to patient health. ISO 10993-18:2020 introduces the concept of the Analytical Evaluation Threshold (AET) to determine the necessary analytical sensitivity for detecting these extractables. Compounds at or above the AET must be reported for toxicological risk assessment. Currently, Static Headspace (SHS) analysis serves as a supplementary technique for volatile analysis, but its variable signal responses and limited sensitivity have hindered the establishment of a defined AET. In response to this challenge, this study explores the potential of Dynamic Headspace (DHS) gas chromatography-mass spectrometry (GC–MS) analysis to achieve the required sensitivity levels for robust toxicological risk assessment of volatile compounds from medical devices. The development of the DHS method involves optimizing several parameters, including incubation temperature, trapping volume/time, adsorbent type, and drying time. The study rigorously evaluates DHS extraction performance and compares it to traditional SHS and Stir Bar Sorptive Extraction (SBSE) GC–MS methods. By applying these newly developed methods to saline extracts from various medical devices and materials, the study demonstrates that DHS achieves over a tenfold increase in sensitivity compared to conventional volatile organic compound (VOC) analysis methods. This enhanced sensitivity enables the quantification of a significantly greater number of VOCs, thereby improving safety assessments for volatiles present in medical devices. With optimized conditions and robust data, DHS methods emerge as a valuable tool for VOC analysis to support comprehensive toxicological risk assessments in the context of medical device safety evaluation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. U.S. Pharmacopea, USP<1664> Assessment of Drug Product Leachables Associated with Pharmaceutical Packaging/Delivery Systems, 2017.

  2. U.S. Pahamacopia, USP<661>Plastic Packaging Systems and Their Materials of Construction, 2017.

  3. ICH M7(R2) Guideline on assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk, 2023.

  4. C. B’Hymer, Residual solvent testing: a review of gas-chromatographic and alternative techniques. Pharm. Res. 20(3), 337–344 (2003). https://doi.org/10.1023/a:1022693516409

    Article  Google Scholar 

  5. D.R. Jenke, J.M. Jene, M. Poss, J. Story, T. Tsilipetros, A. Odufu, W. Terbush, Accumulation of extractables in buffer solutions from a polyolefin plastic container. Int. J. Pharm. 297(1–2), 120–133 (2005). https://doi.org/10.1016/j.ijpharm.2005.03.010

    Article  CAS  Google Scholar 

  6. K.A. Favela, M.J. Hartnett, J.A. Janssen, D.W. Vickers, A.J. Schaub, H.A. Spidle, K.S. Pickens, Nontargeted analysis of face masks: comparison of manual curation to automated GC × GC processing tools. J. Am. Soc. Mass Spectrom. 32(4), 860–871 (2021). https://doi.org/10.1021/jasms.0c00318

    Article  CAS  Google Scholar 

  7. F.C. Su, M.C. Friesen, A.B. Stefaniak, P.K. Henneberger, R.F. LeBouf, M.L. Stanton, X. Liang, M. Humann, M.A. Virji, Exposures to volatile organic Compounds among healthcare workers: modeling the effects of cleaning tasks and product use. Ann. Work Expo. Health 62(7), 852–870 (2018). https://doi.org/10.1093/annweh/wxy055

    Article  CAS  Google Scholar 

  8. A. Steinemann, N. Nematollahi, B. Rismanchi, N. Goodman, S.D. Kolev, Pandemic products and volatile chemical emissions. Air Qual. Atmos. Health 14(1), 47–53 (2021). https://doi.org/10.1007/s11869-020-00912-9

    Article  CAS  Google Scholar 

  9. N. Lin, N. Ding, E. Meza-Wilson, A. Manuradha Devasurendra, C. Godwin, S. Kyun Park, S. Batterman, Volatile organic compounds in feminine hygiene products sold in the US market: a survey of products and health risks. Environ. Int. 144, 105740 (2020). https://doi.org/10.1016/j.envint.2020.105740

    Article  CAS  Google Scholar 

  10. A. Arbin, S. Jacobsson, K. Hänninen, A. Hagman, J. Östelius, Studies on contamination of intravenous solutions from PVC-bags with dynamic headspace GC-MS and LC-diode array techniques. Int. J. Pharm. 28(2), 211–218 (1986). https://doi.org/10.1016/0378-5173(86)90247-4

    Article  CAS  Google Scholar 

  11. O. Ezquerro, B. Pons, M.T. Tena, Development of a headspace solid-phase microextraction-gas chromatography-mass spectrometry method for the identification of odour-causing volatile compounds in packaging materials. J. Chromatogr. A 963(1–2), 381–392 (2002). https://doi.org/10.1016/s0021-9673(02)00211-x

    Article  CAS  Google Scholar 

  12. ISO 10993–18:2020/Amd 1:2022, Biological evaluation of medical devices — Part 18: Chemical characterization of medical device materials within a risk management process — Amendment 1: Determination of the uncertainty factor, 2022.

  13. A. Kremser, M.A. Jochmann, T.C. Schmidt, Systematic comparison of static and dynamic headspace sampling techniques for gas chromatography. Anal. Bioanal. Chem. 408(24), 6567–6579 (2016). https://doi.org/10.1007/s00216-016-9843-y

    Article  CAS  Google Scholar 

  14. L.F. Gyorgy Vas, K. Comstock, J. Cole, Extractable and leachable testing for pharmaceutical packaging finished pharmaceutical products, and medical devices: an analytical perspective. LCGC Suppl. 18(3), 5–14 (2020)

    Google Scholar 

  15. E. Haddadi, E. Mehravar, F. Abbasi, K. Jalili, Expandable styrene/methyl methacrylate copolymer: Synthesis and determination of VOCs by combined thermogravimetry/differential thermal analysis-gas chromatography/mass spectrometry. J. Appl. Polym. Sci. 124(6), 4711–4720 (2012). https://doi.org/10.1002/app.35513

    Article  CAS  Google Scholar 

  16. R.C. Silva, P.M.S. Aguiar, F. Augusto, Coupling of dynamic headspace sampling and solid phase microextraction. Chromatographia 60(11), 687–691 (2004). https://doi.org/10.1365/s10337-004-0446-y

    Article  CAS  Google Scholar 

  17. W. Wojnowski, T. Majchrzak, T. Dymerski, J. Gębicki, J. Namieśnik, Dynamic headspace sampling as an initial step for sample preparation in chromatographic analysis. J. AOAC Int. 100(6), 1599–1606 (2019). https://doi.org/10.5740/jaoacint.17-0206

    Article  CAS  Google Scholar 

  18. A. Marquez, M.P. Serratosa, J. Merida, L. Zea, L. Moyano, Optimization and validation of an automated DHS–TD–GC–MS method for the determination of aromatic esters in sweet wines. Talanta 123, 32–38 (2014). https://doi.org/10.1016/j.talanta.2014.01.052

    Article  CAS  Google Scholar 

  19. L. Moyano, M.P. Serratosa, A. Marquez, L. Zea, Optimization and validation of a DHS-TD-GC-MS method to wineomics studies. Talanta 192, 301–307 (2019). https://doi.org/10.1016/j.talanta.2018.09.032

    Article  CAS  Google Scholar 

  20. I. Guiffard, T. Geny, B. Veyrand, P. Marchand, A. Pellouin-Grouhel, B.L. Bizec, E. Bichon, Quantification of light polycyclic aromatic hydrocarbons in seafood samples using on-line dynamic headspace extraction, thermodesorption, gas chromatography tandem mass spectrometry, based on an isotope dilution approach. J. Chromatogr. A 1619, 460906 (2020). https://doi.org/10.1016/j.chroma.2020.460906

    Article  CAS  Google Scholar 

  21. A.K. Katyal, R.D. Morrison, Chapter 11 – Forensic Applications of Contaminant Transport Models in the Subsurface, 2007.

  22. D.M. Butterfield, R.P. Lipscombe, T.D. Gardiner, Safe sampling volume determinations of 12 volatile organic compounds on Carboxen 1003, Carbopack-X & Tenax-TA. J. Chromatogr. A 1626, 461369 (2020). https://doi.org/10.1016/j.chroma.2020.461369

    Article  CAS  Google Scholar 

  23. J.H. Lee, S.A. Batterman, C. Jia, S. Chernyak, Ozone artifacts and carbonyl measurements using tenax GR, tenax TA, carbopack B, and carbopack X adsorbents. J. Air Waste Manag. Assoc. 56(11), 1503–1517 (2006). https://doi.org/10.1080/10473289.2006.10464560

    Article  CAS  Google Scholar 

  24. O. Vyviurska, M. Hanobiková, A.A. Gomes, I. Špánik, Multivariate optimization of dual-sorbent dynamic headspace extraction of volatiles in wine analysis. Food Chem. 365, 130449 (2021). https://doi.org/10.1016/j.foodchem.2021.130449

    Article  CAS  Google Scholar 

  25. Y. Liu, Z. Wang, W. Wang, J. Xing, Q. Zhang, Q. Ma, Q. Lv, Non-targeted analysis of unknown volatile chemicals in medical masks. Environ. Int. 161, 107122 (2022). https://doi.org/10.1016/j.envint.2022.107122

    Article  CAS  Google Scholar 

  26. U. Colareta Ugarte, P. Prazad, B.L. Puppala, L. Schweig, R. Donovan, D.R. Cortes, A. Gulati, Emission of volatile organic compounds from medical equipment inside neonatal incubators. J. Perinatol. 34(8), 624–628 (2014). https://doi.org/10.1038/jp.2014.65

    Article  CAS  Google Scholar 

  27. F.A. Franchina, G. Purcaro, Chapter Six - Sample preparation strategies for comprehensive volatile fingerprinting, in Comprehensive Analytical Chemistry. ed. by C.E.I. Cordero (Elsevier, Amsterdam, 2022), pp.155–184. https://doi.org/10.1016/bs.coac.2022.02.001

    Chapter  Google Scholar 

  28. V. Ahmadi-Moshiran, A.A. Sajedian, A. Soltanzadeh, F. Seifi, R. Koobasi, N. Nikbakht, M. Sadeghi-Yarandi, Carcinogenic and health risk assessment of respiratory exposure to acrylonitrile, 1,3-butadiene and styrene in the petrochemical industry using the US environmental protection agency method. Int. J. Occup. Saf. Ergon. 28(4), i–ix (2022). https://doi.org/10.1080/10803548.2022.2059171

    Article  Google Scholar 

  29. M. Wijeweera Patabandige, K. Nahan, J.A. Young, B. Oktem, E.M. Sussman, B.H. Yun, S. Wickramasekara, Thermal extraction: an alternative headspace GC–MS method for volatile extractables from medical device materials. Biomed. Mater. Dev. (2023). https://doi.org/10.1007/s44174-023-00103-x

    Article  Google Scholar 

  30. ISO, 10993–12:2021, Biological evaluation of medical devices — Part 12: Sample preparation and reference materials, 2021.

  31. P.A. Lamprea Pineda, K. Demeestere, M. Sabbe, J. Bruneel, H. Van Langenhove, C. Walgraeve, Effect of (bio)surfactant type and concentration on the gas-liquid equilibrium partitioning of hydrophobic volatile organic compounds. J. Hazard. Mater. 443, 130320 (2023). https://doi.org/10.1016/j.jhazmat.2022.130320

    Article  CAS  Google Scholar 

  32. Y. Cheng, H. He, C. Yang, G. Zeng, X. Li, H. Chen, G. Yu, Challenges and solutions for biofiltration of hydrophobic volatile organic compounds. Biotechnol. Adv. 34(6), 1091–1102 (2016). https://doi.org/10.1016/j.biotechadv.2016.06.007

    Article  CAS  Google Scholar 

  33. M.A. Anderson, Influence of surfactants on vapor-liquid partitioning. Environ. Sci. Technol. 26(11), 2186–2191 (1992)

    Article  CAS  Google Scholar 

  34. T. Jumepaeng, D.L. Luthria, S. Chanthai, The effect of surfactant on headspace single drop microextraction for the determination of some volatile aroma compounds in citronella grass and lemongrass leaves by gas chromatography. Anal. Methods 4(2), 421–428 (2012). https://doi.org/10.1039/C2AY05646A

    Article  CAS  Google Scholar 

  35. N. Ochiai, K. Sasamoto, F. David, P. Sandra, Recent Developments of Stir Bar Sorptive Extraction for Food Applications: Extension to Polar Solutes. J. Agric. Food Chem. 66(28), 7249–7255 (2018). https://doi.org/10.1021/acs.jafc.8b02182

    Article  CAS  Google Scholar 

  36. O. Zuloaga, N. Etxebarria, B. González-Gaya, M. Olivares, A. Prieto, A. Usobiaga, 18 - Stir-bar sorptive extraction, in Solid-Phase Extraction. ed. by C.F. Poole (Elsevier, Amsterdam, 2020), pp.493–530. https://doi.org/10.1016/B978-0-12-816906-3.00018-2

    Chapter  Google Scholar 

  37. F. David, P. Sandra, Stir bar sorptive extraction for trace analysis. J. Chromatogr. A 1152(1–2), 54–69 (2007). https://doi.org/10.1016/j.chroma.2007.01.032

    Article  CAS  Google Scholar 

  38. B.L. Armstrong, A.F. Senyurt, V. Narayan, X. Wang, L. Alquier, G. Vas, Stir bar sorptive extraction combined with GC-MS/MS for determination of low level leachable components from implantable medical devices. J. Pharm. Biomed. Anal. 74, 162–170 (2013). https://doi.org/10.1016/j.jpba.2012.10.019

    Article  CAS  Google Scholar 

  39. A. Prieto, O. Basauri, R. Rodil, A. Usobiaga, L.A. Fernández, N. Etxebarria, O. Zuloaga, Stir-bar sorptive extraction: a view on method optimisation, novel applications, limitations and potential solutions. J. Chromatogr. A 1217(16), 2642–2666 (2010). https://doi.org/10.1016/j.chroma.2009.12.051

    Article  CAS  Google Scholar 

  40. M. Kawaguchi, R. Ito, K. Saito, H. Nakazawa, Novel stir bar sorptive extraction methods for environmental and biomedical analysis. J. Pharm. Biomed. Anal. 40(3), 500–508 (2006). https://doi.org/10.1016/j.jpba.2005.08.029

    Article  CAS  Google Scholar 

  41. J.M.F. Nogueira, Novel sorption-based methodologies for static microextraction analysis: A review on SBSE and related techniques. Anal. Chim. Acta 757, 1–10 (2012). https://doi.org/10.1016/j.aca.2012.10.033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded in part by CDRH Critical Path initiative and an appointment to the Research Participation Program administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy and the U.S. FDA. Special thanks go to Drs. Keaton Nahan, Robert Elder and Adrijo Chakraborti for their help in project initiation and data processing. The authors would like to acknowledge Drs. Michael Eppihimer and Victoria Nawaby for their guidance and support throughout the project.

Disclaimer

Findings and conclusions in this paper have not been formally disseminated by the Food and Drug Administration and should not be construed to represent any agency determination or policy. The mention of commercial products, their sources, or their use in this study is not to be construed as either an actual or implied endorsement of such products by the US Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samanthi Wickramasekara.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 339 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wijeweera Patabandige, M., Hill, J., Herath, A. et al. Dynamic Headspace GC–MS Method to Detect Volatile Extractables from Medical Device Materials. Biomedical Materials & Devices (2024). https://doi.org/10.1007/s44174-023-00145-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44174-023-00145-1

Keywords

Navigation