Skip to main content
Log in

Multifunctional Redox and Temperature-Sensitive Drug Delivery Devices

  • Review
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

Despite recent advances in drug delivery systems and tissue engineering, several challenges still need to be overcome for these new technologies to reach patients. The number of new cancer cases is increasing yearly, and the future projection is frightening. Another major health concern is the rise of antibiotic-resistant bacteria. The uncontrolled and excessive use of antibiotics has allowed bacteria to undergo mutation processes, decreasing the efficiency of this sort of drug. Therefore, the development of new medical devices is a battle against time to prevent projections on the advancement of diseases from being reached. Given this scenario, redox-sensitive and temperature-sensitive drug delivery platforms show promising results in the release of bioactive molecules. This review covers the most recent advances involving devices obtained from inorganic and polymeric matrices and their structuring as scaffolds and 3D printing, focusing on their potentiality of redox and temperature sensitivity for biomedical applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data are provided with paper.

Abbreviations

AMF:

Alternating magnetic field

DOX:

Doxorubicin

FRET:

Fluorescence resonance energy transfer

GSH:

Glutathione

LCST:

Lower critical solubility temperature

MFH:

Fluid hyperthermia

MOFs:

Metal–organic frameworks

MRI:

Magnetic resonance imaging

MWCNTs:

Multi-walled carbon nanotubes

NIR:

Near-infrared

NPs:

Nanoparticles

PCL:

Polycaprolactam

PDT:

Photodynamic therapy

PEG:

Polyethyleneglycol

PNIPAAm:

Poly(isopropylacrylamide)

PTT:

Photothermal therapy

PVCL:

Polyvinyl caprolactam

QDs:

Quantum dots

ROS:

Reactive oxygen species

SPION:

Superparamagnetic iron oxide nanoparticles

References

  1. M. Saeedi, M. Eslamifar, K. Khezri, S.M. Dizaj, Applications of nanotechnology in drug delivery to the central nervous system. Biomed. Pharmacother. 111, 666–675 (2019). https://doi.org/10.1016/J.BIOPHA.2018.12.133

    Article  CAS  PubMed  Google Scholar 

  2. N. Zahin, R. Anwar, D. Tewari et al., Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environ. Sci. Pollut. Res. 27, 19151–19168 (2020). https://doi.org/10.1007/s11356-019-05211-0

    Article  CAS  Google Scholar 

  3. A. Radaic, M.B. de Jesus, Y.L. Kapila, Bacterial anti-microbial peptides and nano-sized drug delivery systems: the state of the art toward improved bacteriocins. J. Control. Release 321, 100–118 (2020). https://doi.org/10.1016/J.JCONREL.2020.02.001

    Article  CAS  PubMed  Google Scholar 

  4. K. Dua, R. Wadhwa, G. Singhvi et al., The potential of siRNA based drug delivery in respiratory disorders: recent advances and progress. Drug Dev. Res. 80, 714–730 (2019). https://doi.org/10.1002/DDR.21571

    Article  CAS  PubMed  Google Scholar 

  5. ORGANIZATION WH, World health statistics 2018: monitoring health for the SDGs, sustainable development goals (2018), https://www.who.int/gho/publications/world_health_statistics/en/. Accessed 22 May 2019

  6. K.R. Yabroff, A. Mariotto, F. Tangka et al., Annual Report to the Nation on the Status of Cancer, Part 2: patient economic burden associated with cancer care. J. Natl. Cancer Inst. 113, 1670–1682 (2021). https://doi.org/10.1093/JNCI/DJAB192

    Article  PubMed  PubMed Central  Google Scholar 

  7. European Medicines Agency, European Medicines Agency - Antimicrobial resistance (2015), https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/antimicrobial-resistance. Accessed 28 Sep 2021

  8. R. Canaparo, F. Foglietta, F. Giuntini et al., Recent developments in antibacterial therapy: focus on stimuli-responsive drug-delivery systems and therapeutic nanoparticles. Molecules 24, 1991 (2019). https://doi.org/10.3390/molecules24101991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. F. Laffleur, V. Keckeis, Advances in drug delivery systems: work in progress still needed? Int. J. Pharm. 590, 119912 (2020). https://doi.org/10.1016/J.IJPHARM.2020.119912

    Article  CAS  PubMed  Google Scholar 

  10. K. Park, Controlled drug delivery systems: past forward and future back. J. Control Release 190, 3–8 (2014). https://doi.org/10.1016/j.jconrel.2014.03.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. W. Lu, J. Yao, X. Zhu, Y. Qi, Nanomedicines: redefining traditional medicine. Biomed. Pharmacother. 134, 111103 (2021). https://doi.org/10.1016/j.biopha.2020.111103

    Article  CAS  PubMed  Google Scholar 

  12. W.W. Gan, L.W. Chan, W. Li, T.W. Wong, Critical clinical gaps in cancer precision nanomedicine development. J. Control. Release 345, 811–818 (2022). https://doi.org/10.1016/J.JCONREL.2022.03.055

    Article  CAS  PubMed  Google Scholar 

  13. R.A. Siegel, Stimuli sensitive polymers and self regulated drug delivery systems: a very partial review. J. Control. Release 190, 337–351 (2014). https://doi.org/10.1016/j.jconrel.2014.06.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. E. Issaka, M.A. Wariboko et al., Synergy and coordination between biomimetic nanoparticles and biological cells/tissues/organs/systems: applications in nanomedicine and prospect. Biomed. Mater. Dev. 1, 1–33 (2023). https://doi.org/10.1007/S44174-023-00084-X

    Article  Google Scholar 

  15. E. Fleige, M.A. Quadir, R. Haag, Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv. Drug Deliv. Rev. 64, 866–884 (2012). https://doi.org/10.1016/j.addr.2012.01.020

    Article  CAS  PubMed  Google Scholar 

  16. Q. Sun, Z. Wang, B. Liu et al., Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coord. Chem. Rev. (2022). https://doi.org/10.1016/J.CCR.2021.214267

    Article  PubMed  Google Scholar 

  17. J.L. Zhang, R.S. Srivastava, R.D.K. Misra, Core−shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: synthesis, characterization, and LCST of viable drug-targeting delivery system. Langmuir 23, 6342–6351 (2007). https://doi.org/10.1021/la0636199

    Article  CAS  PubMed  Google Scholar 

  18. J. Zhang, R.D.K. Misra, Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core–shell nanoparticle carrier and drug release response. Acta Biomater. 3, 838–850 (2007). https://doi.org/10.1016/J.ACTBIO.2007.05.011

    Article  CAS  PubMed  Google Scholar 

  19. R. Cheng, F. Meng, C. Deng et al., Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34, 3647–3657 (2013). https://doi.org/10.1016/J.BIOMATERIALS.2013.01.084

    Article  CAS  PubMed  Google Scholar 

  20. L. Wei, C. Cai, J. Lin, T. Chen, Dual-drug delivery system based on hydrogel/micelle composites. Biomaterials 30, 2606–2613 (2009). https://doi.org/10.1016/j.biomaterials.2009.01.006

    Article  CAS  PubMed  Google Scholar 

  21. K. Numata, S. Yamazaki, N. Naga, Biocompatible and biodegradable dual-drug release system based on silk hydrogel containing silk nanoparticles. Biomacromol 13, 1383–1389 (2012). https://doi.org/10.1021/bm300089a

    Article  CAS  Google Scholar 

  22. S. Aryal, C.M.J. Hu, L. Zhang, Combinatorial drug conjugation enables nanoparticle dual-drug delivery. Small 6, 1442–1448 (2010). https://doi.org/10.1002/smll.201000631

    Article  CAS  PubMed  Google Scholar 

  23. S. Yan, L. Xiaoqiang, L. Shuiping et al., Controlled release of dual drugs from emulsion electrospun nanofibrous mats. Colloids Surf. B 73, 376–381 (2009). https://doi.org/10.1016/j.colsurfb.2009.06.009

    Article  CAS  Google Scholar 

  24. R.A. Bini, M.F. Silva, L.C. Varanda et al., Soft nanocomposites of gelatin and poly(3-hydroxybutyrate) nanoparticles for dual drug release. Colloids Surf. B 157, 191–198 (2017). https://doi.org/10.1016/J.COLSURFB.2017.05.051

    Article  CAS  Google Scholar 

  25. Y. Zhang, Y. Feng, Stimuli-responsive microemulsions: state-of-the-art and future prospects. Curr. Opin. Colloid Interface Sci. 49, 27–41 (2020)

    Article  MathSciNet  CAS  Google Scholar 

  26. S.F. Medeiros, A.M. Santos, H. Fessi, A. Elaissari, Stimuli-responsive magnetic particles for biomedical applications. Int. J. Pharm. 403, 139–161 (2011). https://doi.org/10.1016/j.ijpharm.2010.10.011

    Article  CAS  PubMed  Google Scholar 

  27. M.C. Koetting, J.T. Peters, S.D. Steichen, N.A. Peppas, Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater. Sci. Eng. R 93, 1–49 (2015). https://doi.org/10.1016/j.mser.2015.04.001

    Article  Google Scholar 

  28. Y. Wang, F. Gao, X. Li et al., Tumor microenvironment-responsive fenton nanocatalysts for intensified anticancer treatment. J. Nanobiotechnol. 20, 69 (2022)

    Article  CAS  Google Scholar 

  29. Q. Cui, J.Q. Wang, Y.G. Assaraf et al., Modulating ROS to overcome multidrug resistance in cancer. Drug Resist. Updates 41, 1–25 (2018). https://doi.org/10.1016/J.DRUP.2018.11.001

    Article  Google Scholar 

  30. D.J. Dietzen, Amino acids, peptides, and proteins, in Principles and Applications of Molecular Diagnostics (Elsevier, 2018), pp. 345–380

  31. E. Desideri, F. Ciccarone, M.R. Ciriolo, Targeting glutathione metabolism: partner in crime in anticancer therapy. Nutrients 11, 1926 (2019). https://doi.org/10.3390/nu11081926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. L. Brülisauer, M.A. Gauthier, J. Leroux, Disulfide-containing parenteral delivery systems and their redox-biological fate. J. Control. Release (2014). https://doi.org/10.1016/j.jconrel.2014.06.012

    Article  PubMed  Google Scholar 

  33. M. Alsehli, Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: recent advances in drug delivery. Saudi Pharm. J. 28, 255–265 (2020). https://doi.org/10.1016/j.jsps.2020.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. C. Forni, M. Rossi, I. Borromeo et al., Flavonoids: a myth or a reality for cancer therapy? Molecules 26, 3583 (2021). https://doi.org/10.3390/molecules26123583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. J.J. Lim, S. Grinstein, Z. Roth, Diversity and versatility of phagocytosis: roles in innate immunity, tissue remodeling, and homeostasis. Front. Cell. Infect. Microbiol. 7, 191 (2017). https://doi.org/10.3389/fcimb.2017.00191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. A.T. Dharmaraja, Role of Reactive Oxygen Species (ROS) in therapeutics and drug resistance in cancer and bacteria. J. Med. Chem. 60, 3221–3240 (2017). https://doi.org/10.1021/ACS.JMEDCHEM.6B01243

    Article  CAS  PubMed  Google Scholar 

  37. P.F. Monteiro, A. Travanut, C. Conte, C. Alexander, Reduction-responsive polymers for drug delivery in cancer therapy—is there anything new to discover? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. (2021). https://doi.org/10.1002/WNAN.1678

    Article  PubMed  Google Scholar 

  38. V.G. Deepagan, S. Kwon, D.G. You et al., In situ diselenide-crosslinked polymeric micelles for ROS-mediated anticancer drug delivery. Biomaterials 103, 56–66 (2016). https://doi.org/10.1016/j.biomaterials.2016.06.044

    Article  CAS  PubMed  Google Scholar 

  39. N. Ma, Y. Li, H. Xu et al., Dual redox responsive assemblies formed from diselenide block copolymers. J. Am. Chem. Soc. 132, 442–443 (2010). https://doi.org/10.1021/ja908124g

    Article  CAS  PubMed  Google Scholar 

  40. E.A. Repasky, S.S. Evans, M.W. Dewhirst, Temperature matters! and why it should matter to tumor immunologists. Cancer Immunol. Res. 1, 210 (2013). https://doi.org/10.1158/2326-6066.CIR-13-0118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. J. Miner, A. Hoffhines, The discovery of aspirin’s antithrombotic effects. Tex Heart Inst. J. 34, 179–186 (2007)

    PubMed  PubMed Central  Google Scholar 

  42. S. Wrotek, E.K. LeGrand, A. Dzialuk, J. Alcock, Let fever do its job. Evol. Med. Public Health 9, 26–35 (2021). https://doi.org/10.1093/emph/eoaa044

    Article  PubMed  Google Scholar 

  43. J.J. González Plaza, N. Hulak, Z. Zhumadilov, A. Akilzhanova, Fever as an important resource for infectious diseases research. Intractable Rare Dis. Res. 5, 97–102 (2016). https://doi.org/10.5582/irdr.2016.01009

    Article  PubMed  PubMed Central  Google Scholar 

  44. M.T. Cook, P. Haddow, S.B. Kirton, W.J. McAuley, Polymers Exhibiting lower critical solution temperatures as a route to thermoreversible gelators for healthcare. Adv. Funct. Mater. 31, 2008123 (2021). https://doi.org/10.1002/adfm.202008123

    Article  CAS  Google Scholar 

  45. Q. Zhang, S. Dong, M. Zhang, F. Huang, Supramolecular control over thermo-responsive systems with lower critical solution temperature behavior. Aggregate 2, 35–47 (2021). https://doi.org/10.1002/agt2.12

    Article  CAS  Google Scholar 

  46. W. Xiong, W. Wang, Y. Wang et al., Dual temperature/pH-sensitive drug delivery of poly(N-isopropylacrylamide-co-acrylic acid) nanogels conjugated with doxorubicin for potential application in tumor hyperthermia therapy. Colloids Surf. B 84, 447–453 (2011). https://doi.org/10.1016/j.colsurfb.2011.01.040

    Article  CAS  Google Scholar 

  47. B.E. Amantea, R.D. Piazza, J.R.V. Chacon et al., Esterification influence in thermosensitive behavior of copolymers PNIPAm-co-PAA and PNVCL-co-PAA in magnetic nanoparticles surface. Colloids Surf. A 575, 18–26 (2019). https://doi.org/10.1016/J.COLSURFA.2019.04.011

    Article  CAS  Google Scholar 

  48. R.D. Piazza, W.R. Viali, C.C. dos Santos et al., PEGlatyon-SPION surface functionalization with folic acid for magnetic hyperthermia applications. Mater. Res. Express (2020). https://doi.org/10.1088/2053-1591/ab6700

    Article  Google Scholar 

  49. G.N. Lucena, C.C. dos Santos, G.C. Pinto, et al., Drug delivery and magnetic hyperthermia based on surface engineering of magnetic nanoparticles, in Magnetic Nanoparticles in Human Health and Medicine, ed. by C. Caizer, M. Rai (Wiley, 2021), pp. 231–249

  50. G. Eskiizmir, A.T. Ermertcan, K. Yapici, Nanomaterials: promising structures for the management of oral cancer, in Nanostructures for Oral Medicine (Elsevier, 2017), pp. 511–544

  51. J.R. Melamed, R.S. Edelstein, E.S. Day, Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano 9, 6–11 (2015). https://doi.org/10.1021/ACSNANO.5B00021

    Article  CAS  PubMed  Google Scholar 

  52. P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008). https://doi.org/10.1021/ar7002804

    Article  CAS  PubMed  Google Scholar 

  53. J.B. Vines, J.-H. Yoon, N.-E. Ryu et al., Gold nanoparticles for photothermal cancer therapy. Front. Chem. (2019). https://doi.org/10.3389/fchem.2019.00167

    Article  PubMed  PubMed Central  Google Scholar 

  54. H. Kang, J.T. Buchman, R.S. Rodriguez et al., Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities. Chem. Rev. 119, 664–699 (2019). https://doi.org/10.1021/acs.chemrev.8b00341

    Article  CAS  PubMed  Google Scholar 

  55. M. Rycenga, C.M. Cobley, J. Zeng et al., Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011). https://doi.org/10.1021/cr100275d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. S. Eckhardt, P.S. Brunetto, J. Gagnon et al., Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem. Rev. 113, 4708–4754 (2013). https://doi.org/10.1021/cr300288v

    Article  CAS  PubMed  Google Scholar 

  57. M.-C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004). https://doi.org/10.1021/CR030698

    Article  CAS  PubMed  Google Scholar 

  58. C.M. Cobley, L. Au, J. Chen, Y. Xia, Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery. Expert Opin. Drug Deliv. 7, 577–587 (2010). https://doi.org/10.1517/17425240903571614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Y. Yang, Q. Zhang, M. Cai et al., Size-dependent transmembrane transport of gold nanocages. ACS Omega 5, 9864–9869 (2020). https://doi.org/10.1021/acsomega.0c00079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. J. Wang, A.M. Potocny, J. Rosenthal, E.S. Day, Gold nanoshell-linear tetrapyrrole conjugates for near infrared-activated dual photodynamic and photothermal therapies. ACS Omega 5, 926–940 (2020). https://doi.org/10.1021/acsomega.9b04150

    Article  CAS  PubMed  Google Scholar 

  61. M.L. Ermini, V. Voliani, Antimicrobial nano-agents: the copper age. ACS Nano 15, 6008–6029 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. R. Giampietro, F. Spinelli, M. Contino, N.A. Colabufo, The pivotal role of copper in neurodegeneration: a new strategy for the therapy of neurodegenerative disorders. Mol. Pharm. 15, 808–820 (2018)

    Article  CAS  PubMed  Google Scholar 

  63. V. Kumar, A. Kumar, N.S. Chauhan et al., Design and fabrication of a dual protein-based trilayered nanofibrous scaffold for efficient wound healing. ACS Appl. Bio Mater. 5, 2726–2740 (2022). https://doi.org/10.1021/acsabm.2c00200

    Article  CAS  PubMed  Google Scholar 

  64. I. Jahan, E. George, N. Saxena, S. Sen, Silver-nanoparticle-entrapped soft GelMA gels as prospective scaffolds for wound healing. ACS Appl. Bio Mater. 2, 1802–1814 (2019). https://doi.org/10.1021/acsabm.8b00663

    Article  CAS  PubMed  Google Scholar 

  65. J. Xiao, Y. Zhu, S. Huddleston et al., Copper metal-organic framework nanoparticles stabilized with folic acid improve wound healing in diabetes. ACS Nano 12, 1023–1032 (2018). https://doi.org/10.1021/acsnano.7b01850

    Article  CAS  PubMed  Google Scholar 

  66. J. Qian, L. Ji, W. Xu et al., Copper-hydrazide coordinated multifunctional hyaluronan hydrogels for infected wound healing. ACS Appl. Mater. Interfaces 14, 16018–16031 (2022). https://doi.org/10.1021/acsami.2c01254

    Article  CAS  PubMed  Google Scholar 

  67. D. Bobo, K.J. Robinson, J. Islam et al., Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 33, 2373–2387 (2016)

    Article  CAS  PubMed  Google Scholar 

  68. M. Nabavinia, J. Beltran-Huarac, Recent progress in iron oxide nanoparticles as therapeutic magnetic agents for cancer treatment and tissue engineering. ACS Appl. Bio Mater. 3, 8172–8187 (2020). https://doi.org/10.1021/acsabm.0c00947

    Article  CAS  PubMed  Google Scholar 

  69. S. Khizar, N.M. Ahmad, N. Zine et al., Magnetic nanoparticles: from synthesis to theranostic applications. ACS Appl. Nano Mater. 4, 4284–4306 (2021). https://doi.org/10.1021/acsanm.1c00852

    Article  CAS  Google Scholar 

  70. L. Arias, J. Pessan, A. Vieira et al., Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics 7, 46 (2018). https://doi.org/10.3390/antibiotics7020046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Q. Zhao, P. Xie, X. Li et al., Magnetic mesoporous silica nanoparticles mediated redox and pH dual-responsive target drug delivery for combined magnetothermal therapy and chemotherapy. Colloids Surf. A (2022). https://doi.org/10.1016/j.colsurfa.2022.129359

    Article  Google Scholar 

  72. G. Birlik Demirel, Ş Bayrak, Ultrasound/redox/pH-responsive hybrid nanoparticles for triple-triggered drug delivery. J. Drug Deliv. Sci. Technol. (2022). https://doi.org/10.1016/j.jddst.2022.103267

    Article  Google Scholar 

  73. Y. Li, X. Ma, X. Liu et al., Redox-responsive functional iron oxide nanocrystals for magnetic resonance imaging-guided tumor hyperthermia therapy and heat-mediated immune activation. ACS Appl. Nano Mater. 5, 4537–4549 (2022). https://doi.org/10.1021/acsanm.2c00898

    Article  CAS  Google Scholar 

  74. L. Zhang, Y. Li, J.C. Yu, Chemical modification of inorganic nanostructures for targeted and controlled drug delivery in cancer treatment. J. Mater. Chem. B 2, 452–470 (2014). https://doi.org/10.1039/c3tb21196g

    Article  CAS  PubMed  ADS  Google Scholar 

  75. E. Bagheri, L. Ansari, K. Abnous et al., Silica based hybrid materials for drug delivery and bioimaging. J. Control. Release 277, 57–76 (2018). https://doi.org/10.1016/j.jconrel.2018.03.014

    Article  CAS  PubMed  Google Scholar 

  76. N. Yin, X. Wang, T. Yang et al., Multifunctional Fe3O4 cluster@ quantum dot-embedded mesoporous SiO2 nanoplatform probe for cancer cell fluorescence-labelling detection and photothermal therapy. Ceram. Int. 47, 8271–8278 (2021). https://doi.org/10.1016/j.ceramint.2020.11.188

    Article  CAS  Google Scholar 

  77. M.J. Molaei, E. Salimi, Magneto-fluorescent superparamagnetic Fe3O4@SiO2@alginate/carbon quantum dots nanohybrid for drug delivery. Mater. Chem. Phys. (2022). https://doi.org/10.1016/j.matchemphys.2022.126361

    Article  Google Scholar 

  78. X. Su, C. Chan, J. Shi et al., A graphene quantum dot@Fe3O4@SiO2 based nanoprobe for drug delivery sensing and dual-modal fluorescence and MRI imaging in cancer cells. Biosens. Bioelectron. 92, 489–495 (2017). https://doi.org/10.1016/j.bios.2016.10.076

    Article  CAS  PubMed  Google Scholar 

  79. S. Su, L. Lin, H. Li et al., Preparation and properties study of F-SiO2@MPDA-AuNPs drug nanocarriers. Microporous Mesoporous Mater. (2022). https://doi.org/10.1016/j.micromeso.2021.111571

    Article  Google Scholar 

  80. Z. Gao, T. Shi, Y. Li et al., Mesoporous silica-coated gold nanoframes as drug delivery system for remotely controllable chemo-photothermal combination therapy. Colloids Surf. B 176, 230–238 (2019). https://doi.org/10.1016/j.colsurfb.2019.01.005

    Article  CAS  Google Scholar 

  81. C. Veeramani, A.S.E. Newehy, M.A. Alsaif, K.S. Al-Numair, Pouteria Caimito nutritional fruit derived silver nanoparticles and core-shell nanospheres synthesis, characterization, and their oral cancer preventive efficiency. J. Mol. Struct. (2021). https://doi.org/10.1016/j.molstruc.2021.131227

    Article  Google Scholar 

  82. S. Tamta, A. Dahiya, P.S. Kumar, Modified Stöber synthesis of SiO2@Ag nanocomposites and their enhanced refractive index sensing applications. Physica B (2022). https://doi.org/10.1016/j.physb.2022.413971

    Article  Google Scholar 

  83. F. Lv, L. Fu, E.P. Giannelis, G. Qi, Preparation of γ-Fe2O3/SiO2-capsule composites capable of using as drug delivery and magnetic targeting system from hydrophobic iron acetylacetonate and hydrophilic SiO2-capsule. Solid State Sci 34, 49–55 (2014). https://doi.org/10.1016/j.solidstatesciences.2014.05.006

    Article  CAS  ADS  Google Scholar 

  84. C.Y. Lai, B.G. Trewyn, D.M. Jeftinija et al., A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc. 125, 4451–4459 (2003). https://doi.org/10.1021/ja028650l

    Article  CAS  PubMed  Google Scholar 

  85. J. Lai, B.P. Shah, E. Garfunkel, K.B. Lee, Versatile fluorescence resonance energy transfer-based mesoporous silica nanoparticles for real-time monitoring of drug release. ACS Nano 7, 2741–2750 (2013). https://doi.org/10.1021/nn400199t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. J.T. Lin, J.K. Du, Y.Q. Yang et al., pH and redox dual stimulate-responsive nanocarriers based on hyaluronic acid coated mesoporous silica for targeted drug delivery. Mater. Sci. Eng. C 81, 478–484 (2017). https://doi.org/10.1016/j.msec.2017.08.036

    Article  CAS  Google Scholar 

  87. M. Kundu, P. Sadhukhan, N. Ghosh et al., In vivo therapeutic evaluation of a novel bis-lawsone derivative against tumor following delivery using mesoporous silica nanoparticle based redox-responsive drug delivery system. Mater. Sci. Eng. C (2021). https://doi.org/10.1016/j.msec.2021.112142

    Article  Google Scholar 

  88. S. Wang, A. Riedinger, H. Li et al., Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects. ACS Nano 9, 1788–1800 (2015). https://doi.org/10.1021/nn506687t

    Article  CAS  PubMed  Google Scholar 

  89. D. Mo, L. Hu, G. Zeng et al., Cadmium-containing quantum dots: properties, applications, and toxicity. Appl. Microbiol. Biotechnol. 101, 2713–2733 (2017). https://doi.org/10.1007/s00253-017-8140-9

    Article  CAS  PubMed  Google Scholar 

  90. A.M. Wagner, J.M. Knipe, G. Orive, N.A. Peppas, Quantum dots in biomedical applications. Acta Biomater. 94, 44–63 (2019). https://doi.org/10.1016/j.actbio.2019.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. K. Shivaji, S. Mani, P. Ponmurugan et al., Green-synthesis-derived CdS quantum dots using tea leaf extract: antimicrobial, bioimaging, and therapeutic applications in lung cancer cells. ACS Appl. Nano Mater. 1, 1683–1693 (2018). https://doi.org/10.1021/acsanm.8b00147

    Article  CAS  Google Scholar 

  92. W.-H. Zhang, W. Ma, Y.-T. Long, Redox-mediated indirect fluorescence immunoassay for the detection of disease biomarkers using dopamine-functionalized quantum dots. Anal. Chem. 88, 5131–5136 (2016). https://doi.org/10.1021/acs.analchem.6b00048

    Article  CAS  PubMed  Google Scholar 

  93. N. Ma, A. Song, Z. Li, Y. Luan, Redox-sensitive prodrug molecules meet graphene oxide: an efficient graphene oxide-based nanovehicle toward cancer therapy. ACS Biomater. Sci. Eng. 5, 1384–1391 (2019). https://doi.org/10.1021/acsbiomaterials.9b00114

    Article  CAS  PubMed  Google Scholar 

  94. H. Chen, Z. Wang, S. Zong et al., SERS-fluorescence monitored drug release of a redox-responsive nanocarrier based on graphene oxide in tumor cells. ACS Appl. Mater. Interfaces 6, 17526–17533 (2014). https://doi.org/10.1021/am505160v

    Article  CAS  PubMed  Google Scholar 

  95. Z. Zhang, L. Hou, X. Yang et al., A novel redox-sensitive system based on single-walled carbon nanotubes for chemo-photothermal therapy and magnetic resonance imaging. Int. J. Nanomed. (2016). https://doi.org/10.2147/IJN.S98476

    Article  Google Scholar 

  96. J. Jiao, C. Liu, X. Li et al., Fluorescent carbon dot modified mesoporous silica nanocarriers for redox-responsive controlled drug delivery and bioimaging. J. Colloid Interface Sci. 483, 343–352 (2016). https://doi.org/10.1016/j.jcis.2016.08.033

    Article  CAS  PubMed  ADS  Google Scholar 

  97. H.D. Lawson, S.P. Walton, C. Chan, Metal-organic frameworks for drug delivery: a design perspective. ACS Appl. Mater. Interfaces 13, 7004–7020 (2021). https://doi.org/10.1021/acsami.1c01089

    Article  CAS  PubMed  Google Scholar 

  98. Y. Li, S. Feng, P. Dai et al., Tailored Trojan horse nanocarriers for enhanced redox-responsive drug delivery. J. Control. Release 342, 201–209 (2022). https://doi.org/10.1016/j.jconrel.2022.01.006

    Article  CAS  PubMed  Google Scholar 

  99. X.-G. Wang, Z.-Y. Dong, H. Cheng et al., A multifunctional metal–organic framework based tumor targeting drug delivery system for cancer therapy. Nanoscale 7, 16061–16070 (2015). https://doi.org/10.1039/C5NR04045K

    Article  CAS  PubMed  ADS  Google Scholar 

  100. M. Xia, Y. Yan, H. Pu et al., Glutathione responsive nitric oxide release for enhanced photodynamic therapy by a porphyrinic MOF nanosystem. Chem. Eng. J. 442, 136295 (2022). https://doi.org/10.1016/j.cej.2022.136295

    Article  CAS  Google Scholar 

  101. J. Tang, X. Zhang, L. Cheng et al., Multiple stimuli-responsive nanosystem for potent, ROS-amplifying, chemo-sonodynamic antitumor therapy. Bioact. Mater. 15, 355–371 (2022). https://doi.org/10.1016/j.bioactmat.2021.12.002

    Article  CAS  PubMed  Google Scholar 

  102. M. Wang, Y. Zhai, H. Ye et al., High co-loading capacity and stimuli-responsive release based on cascade reaction of self-destructive polymer for improved chemo-photodynamic therapy. ACS Nano 13, 7010–7023 (2019). https://doi.org/10.1021/acsnano.9b02096

    Article  CAS  PubMed  Google Scholar 

  103. G. Wang, P. Huang, M. Qi et al., Facile synthesis of a H2O2-responsive alternating copolymer bearing thioether side groups for drug delivery and controlled release. ACS Omega 4, 17600–17606 (2019). https://doi.org/10.1021/acsomega.9b02923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Z. Zhang, M. Yu, T. An et al., Tumor microenvironment stimuli-responsive polymeric prodrug micelles for improved cancer therapy. Pharm. Res. 37, 4 (2020). https://doi.org/10.1007/s11095-019-2709-1

    Article  CAS  Google Scholar 

  105. S. Zafar Razzacki, Integrated microsystems for controlled drug delivery. Adv. Drug Deliv. Rev. 56, 185–198 (2004). https://doi.org/10.1016/j.addr.2003.08.012

    Article  CAS  PubMed  Google Scholar 

  106. K.F. Leong, C.K. Chua, W.S. Gui, Verani, Building porous biopolymeric microstructures for controlled drug delivery devices using selective laser sintering. Int. J. Adv. Manuf. Technol. 31, 483–489 (2006). https://doi.org/10.1007/s00170-005-0217-4

    Article  Google Scholar 

  107. W.H. Ryu, M. Vyakarnam, R.S. Greco et al., Fabrication of multi-layered biodegradable drug delivery device based on micro-structuring of PLGA polymers. Biomed. Microdev. 9, 845–853 (2007). https://doi.org/10.1007/s10544-007-9097-8

    Article  CAS  Google Scholar 

  108. J. Li, W. Fang, T. Hao et al., An anti-oxidative and conductive composite scaffold for cardiac tissue engineering. Composites B 199, 108285 (2020). https://doi.org/10.1016/j.compositesb.2020.108285

    Article  CAS  Google Scholar 

  109. Y. Li, L. Yang, Y. Hou et al., Polydopamine-mediated graphene oxide and nanohydroxyapatite-incorporated conductive scaffold with an immunomodulatory ability accelerates periodontal bone regeneration in diabetes. Bioact. Mater. 18, 213–227 (2022). https://doi.org/10.1016/j.bioactmat.2022.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. C.-H. Mac, H.-Y. Chan, Y.-H. Lin et al., Engineering a biomimetic bone scaffold that can regulate redox homeostasis and promote osteogenesis to repair large bone defects. Biomaterials 286, 121574 (2022). https://doi.org/10.1016/j.biomaterials.2022.121574

    Article  CAS  PubMed  Google Scholar 

  111. B. Chen, J. Wang, X. Jin et al., Rapamycin incorporating hydrogel improves the progression of osteoarthritis by inducing synovial macrophages polarization and reducing intra-articular inflammation. Mater. Des. 225, 111542 (2023). https://doi.org/10.1016/j.matdes.2022.111542

    Article  CAS  Google Scholar 

  112. Y. Xia, C. Li, J. Cao et al., Liposome-templated gold nanoparticles for precisely temperature-controlled photothermal therapy based on heat shock protein expression. Colloids Surf. B 217, 112686 (2022). https://doi.org/10.1016/j.colsurfb.2022.112686

    Article  CAS  Google Scholar 

  113. J. Depciuch, M. Stec, A. Maximienko et al., Size-dependent theoretical and experimental photothermal conversion efficiency of spherical gold nanoparticles. Photodiagnosis Photodyn. Ther. 39, 102979 (2022). https://doi.org/10.1016/j.pdpdt.2022.102979

    Article  CAS  PubMed  Google Scholar 

  114. Y. Li, Y. Yan, J. Wang et al., Preparation of silver nanoparticles decorated mesoporous silica nanorods with photothermal antibacterial property. Colloids Surf. A (2022). https://doi.org/10.1016/j.colsurfa.2022.129242

    Article  Google Scholar 

  115. D. Kim, R. Amatya, S. Hwang et al., BSA-silver nanoparticles: a potential multimodal therapeutics for conventional and photothermal treatment of skin cancer. Pharmaceutics 13, 575 (2021). https://doi.org/10.3390/pharmaceutics13040575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. J. Wang, X. Zhao, F. Tang et al., Synthesis of copper nanoparticles with controllable crystallinity and their photothermal property. Colloids Surf. A 626, 126970 (2021). https://doi.org/10.1016/j.colsurfa.2021.126970

    Article  CAS  Google Scholar 

  117. S. Naser Mohammed, A. Mishaal Mohammed, K.F. Al-Rawi, Novel combination of multi-walled carbon nanotubes and gold nanocomposite for photothermal therapy in human breast cancer model. Steroids 186, 109091 (2022). https://doi.org/10.1016/j.steroids.2022.109091

    Article  CAS  PubMed  Google Scholar 

  118. M.F. Naief, Y.H. Khalaf, A.M. Mohammed, Novel photothermal therapy using multi-walled carbon nanotubes and platinum nanocomposite for human prostate cancer PC3 cell line. J. Organomet. Chem. 975, 122422 (2022). https://doi.org/10.1016/j.jorganchem.2022.122422

    Article  CAS  Google Scholar 

  119. X. Yan, J. Yang, J. Wu et al., Antibacterial carbon dots/iron oxychloride nanoplatform for chemodynamic and photothermal therapy. Colloid Interface Sci. Commun. 45, 100552 (2021). https://doi.org/10.1016/j.colcom.2021.100552

    Article  CAS  Google Scholar 

  120. J. Wang, X. Zhao, F. Tang et al., Synthesis of copper nanoparticles with controllable crystallinity and their photothermal property. Colloids Surf. A (2021). https://doi.org/10.1016/j.colsurfa.2021.126970

    Article  Google Scholar 

  121. A.F.R. Rodriguez, C.C. dos Santos, K. Lüdtke-Buzug et al., Evaluation of antiplasmodial activity and cytotoxicity assays of amino acids functionalized magnetite nanoparticles: hyperthermia and flow cytometry applications. Mater. Sci. Eng. C 125, 112097 (2021). https://doi.org/10.1016/j.msec.2021.112097

    Article  CAS  Google Scholar 

  122. S.D. Fitzpatrick, L.E. Fitzpatrick, A. Thakur et al., Temperature-sensitive polymers for drug delivery. Expert Rev. Med. Dev. 9, 339–351 (2012). https://doi.org/10.1586/erd.12.24

    Article  CAS  Google Scholar 

  123. Z. Liu, S. Zhang, B. He et al., Temperature-responsive hydroxypropyl methylcellulose-N-isopropylacrylamide aerogels for drug delivery systems. Cellulose 27, 9493–9504 (2020). https://doi.org/10.1007/s10570-020-03426-w

    Article  CAS  Google Scholar 

  124. Z. Kou, D. Dou, H. Mo et al., Preparation and application of a polymer with pH/temperature-responsive targeting. Int. J. Biol. Macromol. 165, 995–1001 (2020). https://doi.org/10.1016/j.ijbiomac.2020.09.248

    Article  CAS  PubMed  Google Scholar 

  125. H. Long, W. Tian, S. Jiang et al., A dual drug delivery platform based on thermo-responsive polymeric micelle capped mesoporous silica nanoparticles for cancer therapy. Microporous Mesoporous Mater. 338, 111943 (2022). https://doi.org/10.1016/j.micromeso.2022.111943

    Article  CAS  Google Scholar 

  126. R. Jahanban-Esfahlan, B. Massoumi, M. Abbasian et al., Dual stimuli-responsive polymeric hollow nanocapsules as “smart” drug delivery system against cancer. Polymer 59, 1492–1504 (2020). https://doi.org/10.1080/25740881.2020.1750652

    Article  CAS  Google Scholar 

  127. X. Li, S. Bian, M. Zhao et al., Stimuli-responsive biphenyl-tripeptide supramolecular hydrogels as biomimetic extracellular matrix scaffolds for cartilage tissue engineering. Acta Biomater. 131, 128–137 (2021). https://doi.org/10.1016/j.actbio.2021.07.007

    Article  CAS  PubMed  Google Scholar 

  128. V. Santos-Rosales, B. Magariños, C. Alvarez-Lorenzo, C.A. García-González, Combined sterilization and fabrication of drug-loaded scaffolds using supercritical CO2 technology. Int. J. Pharm. (2022). https://doi.org/10.1016/j.ijpharm.2021.121362

    Article  PubMed  Google Scholar 

  129. X. Xu, Z. Gu, X. Chen et al., An injectable and thermosensitive hydrogel: promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomater. 86, 235–246 (2019). https://doi.org/10.1016/j.actbio.2019.01.001

    Article  CAS  PubMed  Google Scholar 

  130. B. Wang, H.E. Booij-Vrieling, E.M. Bronkhorst et al., Antimicrobial and anti-inflammatory thermo-reversible hydrogel for periodontal delivery. Acta Biomater. 116, 259–267 (2020). https://doi.org/10.1016/j.actbio.2020.09.018

    Article  CAS  PubMed  Google Scholar 

  131. G.H. Yang, M. Yeo, Y.W. Koo, G.H. Kim, 4D bioprinting: technological advances in biofabrication. Macromol. Biosci. 19, 1800441 (2019). https://doi.org/10.1002/mabi.201800441

    Article  CAS  Google Scholar 

  132. J. Wang, Y. Zhang, N.H. Aghda et al., Emerging 3D printing technologies for drug delivery devices: current status and future perspective. Adv. Drug Deliv. Rev. 174, 294–316 (2021). https://doi.org/10.1016/j.addr.2021.04.019

    Article  CAS  PubMed  Google Scholar 

  133. S. Zu, Z. Zhang, Q. Liu et al., 4D printing of core–shell hydrogel capsules for smart controlled drug release. Biodes. Manuf. 5, 294–304 (2022). https://doi.org/10.1007/s42242-021-00175-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support of the Brazilian agencies São Paulo State Research Foundation (FAPESP), Coordination for Higher Education Personnel Improvement (CAPES), Financing Studies and Projects (FINEP), and National Council of Technological and Scientific Development (CNPq).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Fernando Costa Marques.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piazza, R.D., dos Santos, C.C., Pinto, G.C. et al. Multifunctional Redox and Temperature-Sensitive Drug Delivery Devices. Biomedical Materials & Devices 2, 191–207 (2024). https://doi.org/10.1007/s44174-023-00101-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44174-023-00101-z

Keywords

Navigation