Skip to main content

Advertisement

Log in

Nitrogen Pollution Originating from Wastewater and Agriculture: Advances in Treatment and Management

  • Review
  • Published:
Reviews of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Nitrogen pollution in the environment has become a global concern. Being multidimensional and complex, nitrogen pollution requires a comprehensive package of efforts for its effective management. This article reviews the existing technologies for the treatment and management of nitrogen pollution, water soluble or gaseous, originating from wastewater and agriculture. In the wastewater section, technologies for the wastewater treatment as well as the recovery of nitrogen are reviewed, including physico-chemical and biological techniques. Hybrid treatments could combine the strengths of these strategies to enhance nitrogen removal in wastewater. Moreover, the use of solid wastes to develop efficient adsorbents for nitrogen recovery from wastewater and their subsequent valorization in agricultural soils can be highly rewarding. The agriculture-associated nitrogen pollution can be addressed by the effective management of nitrogenous fertilizers, soils, and crops and the adoption of conservation agriculture practices. It is crucial to improve nitrogen use efficiency in crop production to tackle the challenges of climate change, food security, and environmental degradation. The breeding of crop genotypes possessing an improved nitrogen efficiency and engineering the legume symbiosis can be quite helpful for this. Future research directions have been recognized to foster the research into sustainable management of nitrogen. Collaborative efforts and a comprehensive understanding of existing knowledge of these techniques are required to upscale these techniques for field-scale applications. By presenting a detailed overview of strategies for nitrogen treatment and management in wastewater and agriculture, this article intends to enable a better understanding on this theme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Code Availability

Not applicable.

References

  • Aasfar A, Bargaz A, Yaakoubi K, Hilali A, Bennis I, Zeroual Y, Meftah KI (2021) Nitrogen fixing azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Front Microbiol 12:159

    Article  Google Scholar 

  • Ahmad M, Ahmad M, Usman ARA, Al-Faraj AS, Abduljabbar AS, Al-Wabel MI (2018) Biochar composites with nano zerovalent iron and eggshell powder for nitrate removal from aqueous solution with coexisting chloride ions. Environ Sci Pollut Res 25:25757–25771

    Article  CAS  Google Scholar 

  • Ajmal Z, Usman M, Anastopoulos I, Qadeer A, Zhu R, Wakeel A, Dong R (2020) Use of nano-/micro-magnetite for abatement of cadmium and lead contamination. J Environ Manag 264:110477

    Article  CAS  Google Scholar 

  • Akaboci TRV, Gich F, Ruscalleda M, Balaguer MD, Colprim J (2018) Assessment of operational conditions towards mainstream partial nitritation-anammox stability at moderate to low temperature: Reactor performance and bacterial community. Chem Eng J 350:192–200

    Article  CAS  Google Scholar 

  • Alagha O, Manzar MS, Zubair M, Anil I, Mu’azu ND, Qureshi A (2020) Magnetic Mg-Fe/LDH intercalated activated carbon composites for nitrate and phosphate removal from wastewater: insight into behavior and mechanisms. Nanomaterials 10:1361

    Article  CAS  Google Scholar 

  • Amikam G, Gendel Y (2020) Separation and hydrogenation of nitrate ions by micro-scale capacitive-faradaic fuel cells (CFFCs). Electrochem Commun 120:106831

    Article  CAS  Google Scholar 

  • An D, Su J, Liu Q, Zhu Y, Tong Y, Li J, Jing R, Li B, Li Z (2006) Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant Soil 284:73–84

    Article  CAS  Google Scholar 

  • An H, Owens J, Stoeckli J, Hao X, Beres B, Li Y (2020) Nitrous oxide emissions following split fertilizer application on winter wheat grown on Mollisols of Southern Alberta Canada. Geoderma Reg 21:e00272

    Article  Google Scholar 

  • Andresen M, Dresbøll DB, Jensen LS, Magid J, Thorup-Kristensen K (2016) Cultivar differences in spatial root distribution during early growth in soil, and its relation to nutrient uptake-a study of wheat, onion and lettuce. Plant Soil 408:255–270

    Article  CAS  Google Scholar 

  • Andrews J, Sanders Z, Cabrera M, Hill N, Radcliffe D (2020) Simulated nitrate leaching in annually cover cropped and perennial living mulch corn production systems. J Soil Water Conserv 75:91–102

    Article  Google Scholar 

  • Atkinson JA, Wingen LU, Griffiths M, Pound MP, Gaju O, Foulkes MJ, Le Gouis J, Griffiths S, Bennett MJ, King J (2015) Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat. J Exp Bot 66:2283–2292

    Article  CAS  Google Scholar 

  • Bae S, Collins RN, Waite TD, Hanna K (2018) Advances in surface passivation of nanoscale Zerovalent iron: a critical review. Environ Sci Technol 52:12010–12025

    Article  CAS  Google Scholar 

  • Bagchi S, Biswas R, Nandy T (2012) Autotrophic ammonia removal processes: ecology to technology. Crit Rev Environ Sci Technol 42:1353–1418

    Article  CAS  Google Scholar 

  • Bagherifam S, Komarneni S, Lakzian A, Fotovat A, Khorasani R, Huang W, Ma J, Hong S, Cannon FS, Wang Y (2014) Highly selective removal of nitrate and perchlorate by organoclay. Appl Clay Sci 95:126–132

    Article  CAS  Google Scholar 

  • Bai X, Zhang Z, Cui J, Liu Z, Chen Z, Zhou J (2020) Strategies to mitigate nitrate leaching in vegetable production in China: a meta-analysis. Environ Sci Pollut Res 27:18382–18391

    Article  CAS  Google Scholar 

  • Bai Z, Ma L, Qin W, Chen Q, Oenema O, Zhang F (2014) Changes in pig production in China and their effects on nitrogen and phosphorus use and losses. Environ Sci Technol 48:12742–12749

    Article  CAS  Google Scholar 

  • Bandaogo A, Fofana B, Youl S (2018) Fertilizer deep placement as one way of increasing nitrogen use efficiency and grain yield in West African irrigated rice systems. In: Improving the profitability, sustainability and efficiency of nutrients through site specific fertilizer recommendations in West Africa agro-ecosystems. Springer, pp 291–310

  • Bernhard A (2010) The nitrogen cycle: processes, players, and human impact. Nat Educ Knowl 3:25

    Google Scholar 

  • Bhatia A, Sasmal S, Jain N, Pathak H, Kumar R, Singh A (2010) Mitigating nitrous oxide emission from soil under conventional and no-tillage in wheat using nitrification inhibitors. Agric Ecosyst Environ 136:247–253

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sillanpää M (2011) A review of emerging adsorbents for nitrate removal from water. Chem Eng J 168:493–504

    Article  CAS  Google Scholar 

  • Birkmose T, Vestergaard A. Acidification of slurry in barns, stores and during application: review of Danish research, trials and experience. Proceedings from the 15th RAMIRAN Conference, Versailles, 2013, pp. 3–5.

  • Boley A, Müller W-R, Haider G (2000) Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems. Aquac Eng 22:75–85

    Article  Google Scholar 

  • Breisha GZ, Winter J (2010) Bio-removal of nitrogen from wastewaters: a review. J Am Sci 6:508–528

    Google Scholar 

  • Brkljacic J, Grotewold E, Scholl R, Mockler T, Garvin DF, Vain P, Brutnell T, Sibout R, Bevan M, Budak H, Caicedo AL (2011) Brachypodium as a model for the grasses: today and the future. Plant Physiol 157:3–13

    Article  CAS  Google Scholar 

  • Brutnell TP, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu XG, Kellogg E, Van Eck J (2010) Setaria viridis: a model for C4 photosynthesis. Plant Cell 22:2537–2544

    Article  CAS  Google Scholar 

  • Cao S, Zhou Y (2019) New direction in biological nitrogen removal from industrial nitrate wastewater via anammox. Appl Microbiol Biotechnol 103:7459–7466

    Article  CAS  Google Scholar 

  • Cao Y, van Loosdrecht MC, Daigger GT (2017) Mainstream partial nitritation–anammox in municipal wastewater treatment: status, bottlenecks, and further studies. Appl Microbiol Biotechnol 101:1365–1383

    Article  CAS  Google Scholar 

  • Carey DE, McNamara PJ, Zitomer DH (2015) Biochar from pyrolysis of biosolids for nutrient adsorption and turfgrass Cultivation. Water Environ Res 87:2098–2106

    Article  CAS  Google Scholar 

  • Chen SH, Islam A, Edis R, Freney J, Walker C (2008) Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture: a review of enhanced efficiency fertilisers. Soil Res 46:289–301

    Article  CAS  Google Scholar 

  • Chen J, Wei X (2018) Controlled-released fertilizers as a means to reduce nitrogen leaching and runoff in container-grown plant production. Nitrogen Agric Updates Khan A 15:33–52

    Google Scholar 

  • Chen L, Chen XL, Zhou CH, Yang HM, Ji SF, Tong DS, Zhong ZK, Yu WH, Chu MQ (2017) Environmental-friendly montmorillonite-biochar composites: facile production and tunable adsorption-release of ammonium and phosphate. J Clean Prod 156:648–659

    Article  CAS  Google Scholar 

  • Chen Q, Ni J, Ma T, Liu T, Zheng M (2015) Bioaugmentation treatment of municipal wastewater with heterotrophic-aerobic nitrogen removal bacteria in a pilot-scale SBR. Bioresour Technol 183:25–32

    Article  CAS  Google Scholar 

  • Chen X, Cui Z, Fan M, Vitousek P, Zhao M, Ma W, Wang Z, Zhang W, Yan X, Yang J (2014) Producing more grain with lower environmental costs. Nature 514:486–489

    Article  CAS  Google Scholar 

  • Chen X-P, Cui Z-L, Vitousek PM, Cassman KG, Matson PA, Bai J-S, Meng Q-F, Hou P, Yue S-C, Römheld V (2011) Integrated soil–crop system management for food security. Proc Natl Acad Sci USA 108:6399–6404

    Article  CAS  Google Scholar 

  • Cho D-W, Song H, Schwartz FW, Kim B, Jeon B-H (2015) The role of magnetite nanoparticles in the reduction of nitrate in groundwater by zero-valent iron. Chemosphere 125:41–49

    Article  CAS  Google Scholar 

  • Choudhary MA, Akramkhanov A, Saggar S (2002) Nitrous oxide emissions from a New Zealand cropped soil: tillage effects, spatial and seasonal variability. Agric Ecosyst Environ 93:33–43

    Article  CAS  Google Scholar 

  • Christensen ML, Sommer SG (2013) Manure characterisation and inorganic chemistry. In: Jensen L, Christensen M, Sommer S, Schmidt T (eds) Animal manure: recycling, treatment, and management. Wiley, Chichester, pp 41–65

    Chapter  Google Scholar 

  • Christian R, Sébastien N, Georges O-N, Guillaume M, Martine M, Delphine G, Kévin B, Marjorie E, Asfaw Z, Yuhai Z, Hella B, Muayad A-J, Aurélien R, Vincent N, Paul B, Khalil H, Christelle D, Mustapha A, Ravi K, Joseph S, Magali A, Pascal R, Fabrice N, Nathalie H, Jean-Marie G (2016) Use of ferrihydrite-coated pozzolana and biogenic green rust to purify waste water containing phosphate and nitrate. Curr Inorg Chem 6:100–118

    Article  Google Scholar 

  • Cormier F, Foulkes J, Hirel B, Gouache D, Moënne-Loccoz Y, Le Gouis J (2016) Breeding for increased nitrogen-use efficiency: a review for wheat (T. aestivum L.). Plant Breed 135:255–278

    Article  CAS  Google Scholar 

  • Cui H, Yang Y, Ding Y, Li D, Zhen G, Lu X, Huang M, Huang X (2019) A novel pilot-scale tubular bioreactor-enhanced floating treatment wetland for efficient in situ nitrogen removal from urban landscape water: Long-term performance and microbial mechanisms. Water Environ Res 91:1498–1508

    Article  CAS  Google Scholar 

  • Dadrasnia A, de Bona Muñoz I, Yáñez EH, Lamkaddam IU, Mora M, Ponsá S, Ahmed M, Argelaguet LL, Williams PM, Oatley-Radcliffe DL (2021) Sustainable nutrient recovery from animal manure: a review of current best practice technology and the potential for freeze concentration. J Clean Prod 315:128106

    Article  CAS  Google Scholar 

  • Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, von Bergen M, Rattei T, Bendinger B, Nielsen PH, Wagner M (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509

    Article  CAS  Google Scholar 

  • Dass A, Jat SL, Rana K (2015) Resource conserving techniques for improving nitrogen-use efficiency. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer, New York, pp 45–58

    Chapter  Google Scholar 

  • de Almeida Fernandes L, Pereira AD, Leal CD, Davenport R, Werner D, Filho CRM, Bressani-Ribeiro T, de Lemos Chernicharo CA, de Araújo JC (2018) Effect of temperature on microbial diversity and nitrogen removal performance of an anammox reactor treating anaerobically pretreated municipal wastewater. Bioresour Technol 258:208–219

    Article  Google Scholar 

  • de Klein CAM, Eckard RJ (2008) Targeted technologies for nitrous oxide abatement from animal agriculture. Aust J Exp Agric 48:14–20

    Article  Google Scholar 

  • De Oliveira Silva A, Ciampitti IA, Slafer GA, Lollato RP (2020) Nitrogen utilization efficiency in wheat: a global perspective. Eur J Agron 114:126008

    Article  Google Scholar 

  • Dent D, Cocking E (2017) Establishing symbiotic nitrogen fixation in cereals and other non-legume crops: the greener nitrogen revolution. Agric Food Secur 6:1–9

    Article  Google Scholar 

  • DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91–91

    Article  CAS  Google Scholar 

  • Desloover J, Abate WA, Verstraete W, Boon N, Rabaey K (2012) Electrochemical resource recovery from digestate to prevent ammonia toxicity during anaerobic digestion. Environ Sci Technol 46:12209–12216

    Article  CAS  Google Scholar 

  • Devkota M, Devkota KP, Gupta RK, Sayre KD, Martius C, Lamers JP (2015) Conservation agriculture farming practices for optimizing water and fertilizer use efficiency in Central Asia. In: Drechsel P, Heffer P, Magen H, Mikkelsen R, Wichelns D (eds). Managing water and fertilizer for sustainable agricultural intensification, pp 242–257.

  • Dhakal P, Matocha CJ, Huggins FE, Vandiviere MM (2013) Nitrite reactivity with magnetite. Environ Sci Technol 47:6206–6213

    Article  CAS  Google Scholar 

  • Dimkpa CO, Bindraban PS (2017) Nanofertilizers: new products for the industry? J Agric Food Chem 66:6462–6473

    Article  Google Scholar 

  • Divband HL, Hooshmand A, Naseri AA, Mohammadi AS, Abbasi F, Bhatnagar A (2016) Removal of nitrate from aqueous solution by modified sugarcane bagasse biochar. Ecol Eng 95:101–111

    Article  Google Scholar 

  • Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149:137–141

    Article  CAS  Google Scholar 

  • Du L, Trinh X, Chen Q, Wang C, Wang H, Xia X, Zhou Q, Xu D, Wu Z (2018) Enhancement of microbial nitrogen removal pathway by vegetation in integrated vertical-flow constructed wetlands (IVCWs) for treating reclaimed water. Bioresour Technol 249:644–651

    Article  CAS  Google Scholar 

  • Duncan E, Dell C, Kleinman P, Beegle D (2017) Nitrous oxide and ammonia emissions from injected and broadcast-applied dairy slurry. J Environ Qual 46:36–44

    Article  CAS  Google Scholar 

  • Elawwad A (2017) Optimized biological nitrogen removal of high-strength ammonium wastewater by activated sludge modeling. Journal of Water Reuse and Desalination 8:393–403

    Article  Google Scholar 

  • Emmerling C, Krein A, Junk J (2020) Meta-analysis of strategies to reduce NH3 emissions from slurries in European agriculture and consequences for greenhouse gas emissions. Agronomy 10:1633

    Article  CAS  Google Scholar 

  • Eskin N, Vessey K, Tian L (2014) Research progress and perspectives of nitrogen fixing bacterium, gluconacetobacter diazotrophicus, in monocot plants. Int J Agron 2014:208383

    Article  Google Scholar 

  • European-Commission (2013) Nitrogen pollution and the european environment: implications for air quality policy. https://ec.europa.eu/environment/integration/research/newsalert/pdf/IR6_en.pdf (Accessed on March 22, 2021).

  • Fangueiro D, Hjorth M, Gioelli F (2015) Acidification of animal slurry: a review. J Environ Manage 149:46–56

    Article  CAS  Google Scholar 

  • FAO (2019) World fertilizer trends and outlook to 2022. http://www.fao.org/3/ca6746en/ca6746en.pdf.

  • Fernández I, Dosta J, Mata-Álvarez J (2016) A critical review of future trends and perspectives for the implementation of partial nitritation/anammox in the main line of municipal WWTPs. Desalin Water Treat 57:27890–27898

    Google Scholar 

  • Fidel RB, Laird DA, Spokas KA (2018) Sorption of ammonium and nitrate to biochars is electrostatic and pH-dependent. Sci Rep 8:17627

    Article  Google Scholar 

  • Folino A, Calabrò PS, Zema DA (2020) Effects of ammonia stripping and other physico-chemical pretreatments on anaerobic digestion of swine wastewater. Energies 13:3413

    Article  CAS  Google Scholar 

  • Gao Y, de Bang TC, Schjoerring JK (2019) Cisgenic overexpression of cytosolic glutamine synthetase improves nitrogen utilization efficiency in barley and prevents grain protein decline under elevated CO2. Plant Biotechnol J 17:1209–1221

    Article  CAS  Google Scholar 

  • Garnier J, Anglade J, Benoit M, Billen G, Puech T, Ramarson A, Passy P, Silvestre M, Lassaletta L, Trommenschlager J-M, Schott C, Tallec G (2016) Reconnecting crop and cattle farming to reduce nitrogen losses to river water of an intensive agricultural catchment (Seine basin, France): past, present and future. Environ Sci Policy 63:76–90

    Article  CAS  Google Scholar 

  • Gatti MN, Fernández LG, Sánchez MP, Parolo ME (2016) Aminopropyltrimethoxysilane- and aminopropyltrimethoxysilane-silver-modified montmorillonite for the removal of nitrate ions. Environ Technol 37:2658–2668

    Article  CAS  Google Scholar 

  • Ghosh S, Lobanov S, Lo VK (2019) An overview of technologies to recover phosphorus as struvite from wastewater: advantages and shortcomings. Environ Sci Pollut Res 26:19063–19077

    Article  CAS  Google Scholar 

  • Giovannini L, Palla M, Agnolucci M, Avio L, Sbrana C, Turrini A, Giovannetti M (2020) Arbuscular mycorrhizal fungi and associated microbiota as plant biostimulants: research strategies for the selection of the best performing inocula. Agronomy 10:106

    Article  Google Scholar 

  • Gómez-Suárez AD, Nobile C, Faucon M-P, Pourret O, Houben D (2020) Fertilizer potential of struvite as affected by nitrogen form in the rhizosphere. Sustainability 12:2212

    Article  Google Scholar 

  • Goyal RK, Schmidt MA, Hynes MF (2021) Molecular Biology in the Improvement of Biological Nitrogen Fixation by Rhizobia and Extending the Scope to Cereals. Microorganisms 9:18

    Article  Google Scholar 

  • Guo H, Zhou J, Su J, Zhang Z (2005) Integration of nitrification and denitrification in airlift bioreactor. Biochem Eng J 23:57–62

    Article  CAS  Google Scholar 

  • Han L, YangWangHuChenHu LHXZC (2016) Sustaining reactivity of Fe0 for nitrate reduction via electron transfer between dissolved Fe2+ and surface iron oxides. J Hazard Mater 308:208–215

    Article  CAS  Google Scholar 

  • Hansen HCB, Borggaard OK, Sørensen J (1994) Evaluation of the free energy of formation of Fe(II)-Fe(III) hydroxide-sulphate (green rust) and its reduction of nitrite. Geochim Cosmochim Acta 58:2599–2608

    Article  CAS  Google Scholar 

  • Hansen HCB, Guldberg S, Erbs M, Bender KC (2001) Kinetics of nitrate reduction by green rusts-effects of interlayer anion and Fe(II):Fe(III) ratio. Appl Clay Sci 18:81–91

    Article  CAS  Google Scholar 

  • Hansen HCB, Koch CB, Nancke-Krogh H, Borggaard OK, Sørensen J (1996) Abiotic nitrate reduction to ammonium: key role of green rust. Environ Sci Technol 30:2053–2056

    Article  CAS  Google Scholar 

  • Haris M, Hamid Y, Usman M, Wang L, Saleem A, Su F, Guo J, Li Y (2021) Crop-residues derived biochar: Synthesis, properties, characterization and application for the removal of trace elements in soils. J Hazard Mater 416:126212

    Article  CAS  Google Scholar 

  • He H, Huang Y, Yan M, Xie Y, Li Y (2020) Synergistic effect of electrostatic adsorption and ion exchange for efficient removal of nitrate. Colloids Surf A 584:123973

    Article  CAS  Google Scholar 

  • Hellinga C, Schellen A, Mulder JW, van Loosdrecht Mv, Heijnen J. (1998) The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water. Water Sci Technol 37:135–142

    Article  CAS  Google Scholar 

  • Henning S, Mulvaney RL, Branham BE (2013) Factors affecting foliar nitrogen uptake by creeping bentgrass. Crop Sci 53:1778–1783

    Article  Google Scholar 

  • Hou Y, Velthof GL, Lesschen JP, Staritsky IG, Oenema O (2017) Nutrient recovery and emissions of ammonia, nitrous oxide, and methane from animal manure in europe: effects of manure treatment technologies. Environ Sci Technol 51:375–383

    Article  CAS  Google Scholar 

  • Hou Y, Velthof GL, Oenema O (2015) Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: A meta-analysis and integrated assessment. Glob Change Biol 21:1293–1312

    Article  Google Scholar 

  • Houben D, Sonnet P (2020) Metal immobilization and nitrate reduction in a contaminated soil amended with zero-valent iron (Fe0). Ecotoxicol Environ Saf 201:110868

    Article  CAS  Google Scholar 

  • Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y (2015) Variation in NRT11B contributes to nitrate-use divergence between rice subspecies. Nat Genet 47:834

    Article  CAS  Google Scholar 

  • Huang J, Jones A, Waite TD, Chen Y, Huang X, Rosso KM, Kappler A, Mansor M, Tratnyek PG, Zhang H (2021) Fe(II) redox chemistry in the environment. Chem Rev 121:8161–8233

    Article  CAS  Google Scholar 

  • Huang X, Wang N, Kang Z, Yang X, Pan M (2022) An Investigation into the adsorption of ammonium by zeolite-magnetite composites. Minerals 12:256

    Article  CAS  Google Scholar 

  • Humplík JF, Lazár D, Husičková A, Spíchal L (2015) Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses–a review. Plant Methods 11:29

    Article  Google Scholar 

  • Huygens D, Saveyn H, Tonini D, Eder P, Delgado Sancho L (2019) Technical proposals for selected new fertilising materials under the Fertilising Products Regulation (Regulation (EU) 2019/1009): process and quality criteria, and assessment of environmental and market impacts for precipitated phosphate salts & derivates, thermal oxidation materials & derivates and pyrolysis & gasification materials. Publications Office of the European Union

  • Ilyas H, Masih I (2017) The performance of the intensified constructed wetlands for organic matter and nitrogen removal: A review. J Environ Manage 198:372–383

    Article  CAS  Google Scholar 

  • Ismadji S, Tong DS, Soetaredjo FE, Ayucitra A, Yu WH, Zhou CH (2015) Bentonite-hydrochar composite for removal of ammonium from Koi fish tank. Appl Clay Sci 114:467

    Article  CAS  Google Scholar 

  • Jasna RS, Gandhimathi R, Lavanya A, Ramesh ST (2020) An integrated electrochemical-adsorption system for removal of nitrate from water. J Environ Chem Eng 8:104387

    Article  CAS  Google Scholar 

  • Jayasundara S, Wagner-Riddle C, Parkin G, von Bertoldi P, Warland J, Kay B, Voroney P (2007) Minimizing nitrogen losses from a corn–soybean–winter wheat rotation with best management practices. Nutr Cycl Agroecosyst 79:141–159

    Article  Google Scholar 

  • Jellali S, El-Bassi L, Charabi Y, Uaman M, Khiari B, Al-Wardy M, Jeguirim M (2022) Recent advancements on biochars enrichment with ammonium and nitrates from wastewaters: a critical review on benefits for environment and agriculture. J Environ Manage 305:114368

    Article  CAS  Google Scholar 

  • Jellali S, Khiari B, Usman M, Hamdi H, Charabi Y, Jeguirim M (2021) Sludge-derived biochars: a review on the influence of synthesis conditions on pollutants removal efficiency from wastewaters. Renew Sust Energ Rev 144:111068

    Article  CAS  Google Scholar 

  • Jensen VB, Darby JL, Seidel C, Gorman C (2014) Nitrate in potable water supplies: alternative management strategies. Crit Rev Environ Sci Technol 44:2203–2286

    Article  CAS  Google Scholar 

  • Jia H, Yuan Q (2016) Removal of nitrogen from wastewater using microalgae and microalgae–bacteria consortia. Cogent Environ Sci 2:1275089

    Article  Google Scholar 

  • Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol 13:677–684

    Article  CAS  Google Scholar 

  • Kalaruban M, Loganathan P, Kandasamy J, Naidu R, Vigneswaran S (2017) Enhanced removal of nitrate in an integrated electrochemical-adsorption system. Sep Purif Technol 189:260–266

    Article  CAS  Google Scholar 

  • Kanter DR, Zhang X, Mauzerall DL (2015) Reducing nitrogen pollution while decreasing farmers’ costs and increasing fertilizer industry profits. J Environ Qual 44:325–335

    Article  CAS  Google Scholar 

  • Kartal B, Jv K, Van Loosdrecht M (2010) Sewage treatment with anammox. Science 328:702–703

    Article  CAS  Google Scholar 

  • Karthikeyan P, Sirajudheen P, Nikitha MR, Meenakshi S (2020) Removal of phosphate and nitrate via a zinc ferrite@activated carbon hybrid composite under batch experiments: Study of isotherm and kinetic equilibriums. Environ Nanotechnol Monit Manag 14:100378

    Google Scholar 

  • Khalil AME, Eljamal O, Jribi S, Matsunaga N (2016) Promoting nitrate reduction kinetics by nanoscale zero valent iron in water via copper salt addition. Chem Eng J 287:367–380

    Article  CAS  Google Scholar 

  • Khin T, Annachhatre AP (2004) Novel microbial nitrogen removal processes. Biotechnol Adv 22:519–532

    Article  CAS  Google Scholar 

  • Kierończyk M, Mazur K, Barwicki J, Wiśniewska R, Fligiel B (2019) Report of Institute of Technology and Life Sciences. Results of ammonia emission in 2017 during field trials on permanent grassland. Final Report of Activity WP4 Field Trials: Methodology, Collection of Results and Partners’ Practical Experiences 2016–2018. Available online: http://balticslurry.eu/wp-content/uploads/2016/06/Report-WP4.pdf Accessed on January 25, 2022

  • Kiskira K, Papirio S, van Hullebusch ED, Esposito G (2017) Fe(II)-mediated autotrophic denitrification: A new bioprocess for iron bioprecipitation/biorecovery and simultaneous treatment of nitrate-containing wastewaters. Int Biodeterior Biodegrad 119:631–648

    Article  CAS  Google Scholar 

  • Koelkebeck K, Harrison P (2002) Evaluation of aluminium sulphate manure treatment application on ammonia generation rate and manure properties of laying hen manure. Illinois Livestock Trail: http://livestocktrail.illinois.edu/poultrynet/paperDisplay.cfm?ContentID=649

  • Kopittke PM, Lombi E, Wang P, Schjoerring JK, Husted S (2019) Nanomaterials as fertilizers for improving plant mineral nutrition and environmental outcomes. Environ Sci Nano 6:3513–3524

    Article  CAS  Google Scholar 

  • Kottegoda N, Sandaruwan C, Priyadarshana G, Siriwardhana A, Rathnayake UA, Berugoda Arachchige DM, Kumarasinghe AR, Dahanayake D, Karunaratne V, Amaratunga GA (2017) Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11:1214–1221

    Article  CAS  Google Scholar 

  • Kuntke P, Śmiech KM, Bruning H, Zeeman G, Saakes M, Sleutels THJA, Hamelers HVM, Buisman CJN (2012) Ammonium recovery and energy production from urine by a microbial fuel cell. Water Res 46:2627–2636

    Article  CAS  Google Scholar 

  • Kupper T, Häni C, Neftel A, Kincaid C, Bühler M, Amon B, VanderZaag A (2020) Ammonia and greenhouse gas emissions from slurry storage: a review. Agr Ecosyst Environ 300:106963

    Article  CAS  Google Scholar 

  • Kuypers MMM, Marchant HK, Kartal B (2018) The microbial nitrogen-cycling network. Nat Rev Microbiol 16:263–276

    Article  CAS  Google Scholar 

  • Lam SK, Suter H, Davies R, Bai M, Mosier AR, Sun J, Chen D (2018) Direct and indirect greenhouse gas emissions from two intensive vegetable farms applied with a nitrification inhibitor. Soil Biol Biochem 116:48–51

    Article  CAS  Google Scholar 

  • Lam SK, Suter H, Mosier AR, Chen D (2017) Using nitrification inhibitors to mitigate agricultural N2O emission: a double-edged sword? Glob Change Biol 23:485–489

    Article  Google Scholar 

  • Lazaratou CV, Vayenas DV, Papoulis D (2020) The role of clays, clay minerals and clay-based materials for nitrate removal from water systems: a review. Appl Clay Sci 185:105377

    Article  CAS  Google Scholar 

  • Ledgard SF, Menneer JC, Dexter MM, Kear MJ, Lindsey S, Peters JS, Pacheco D (2008) A novel concept to reduce nitrogen losses from grazed pastures by administering soil nitrogen process inhibitors to ruminant animals: a study with sheep. Agr Ecosyst Environ 125:148–158

    Article  CAS  Google Scholar 

  • Lehnert N, Dong HT, Harland JB, Hunt AP, White CJ (2018) Reversing nitrogen fixation. Nat Rev Chem 2:278–289

    Article  CAS  Google Scholar 

  • Lehnert N, Musselman BW, Seefeldt LC (2021) Grand challenges in the nitrogen cycle. Chem Soc Rev 50:3640–3646

    Article  CAS  Google Scholar 

  • Li A, Sun G, Xu M (2008) Recent patents on anammox process. Recent Patents Eng 2:189–194

    Article  CAS  Google Scholar 

  • Li J, Li J, Gao R, Wang M, Yang L, Wang X, Zhang L, Peng Y (2018) A critical review of one-stage anammox processes for treating industrial wastewater: optimization strategies based on key functional microorganisms. Bioresour Technol 265:498–505

    Article  CAS  Google Scholar 

  • Li S, Kappler A, Haderlein SB, Zhu Y-G (2021) Powering biological nitrogen removal from the environment by geobatteries. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2021.10.008

    Article  Google Scholar 

  • Li X, Li Y, Lv D, Li Y, Wu J (2020) Nitrogen and phosphorus removal performance and bacterial communities in a multi-stage surface flow constructed wetland treating rural domestic sewage. Sci Total Environ 709:136235

    Article  CAS  Google Scholar 

  • Liu S, Lin F, Wu S, Ji C, Sun Y, Jin Y, Li S, Li Z, Zou J (2017) A meta-analysis of fertilizer-induced soil NO and combined NO+ N2O emissions. Glob Change Biol 23:2520–2532

    Article  Google Scholar 

  • Liu X, Yuan Y, Martinez C, Babu R, Suarez EA, Zhang X, Neiff N, Trachsel S (2020) Identification of QTL for early vigor and leaf senescence across two tropical maize doubled haploid populations under nitrogen deficient conditions. Euphytica 216:42

    Article  CAS  Google Scholar 

  • Liu Y, Shi H, Xia L, Shi H, Shen T, Wang Z, Wang G, Wang Y (2010) Study of operational conditions of simultaneous nitrification and denitrification in a Carrousel oxidation ditch for domestic wastewater treatment. Bioresour Technol 101:901–906

    Article  CAS  Google Scholar 

  • Liu Y, Wang J (2019) Reduction of nitrate by zero valent iron (ZVI)-based materials: a review. Sci Total Environ 671:388–403

    Article  CAS  Google Scholar 

  • Lobet G (2017) Image analysis in plant sciences: publish then perish. Trends Plant Sci 22:559–566

    Article  CAS  Google Scholar 

  • Loganathan P, Vigneswaran S, Kandasamy J (2013) Enhanced removal of nitrate from water using surface modification of adsorbents: a review. J Environ Manage 131:363–374

    Article  CAS  Google Scholar 

  • Lorick D, Macura B, Ahlström M, Grimvall A, Harder R (2020) Effectiveness of struvite precipitation and ammonia stripping for recovery of phosphorus and nitrogen from anaerobic digestate: a systematic review. Environ Evid 9:27

    Article  Google Scholar 

  • Lu J, Guo Z, Kang Y, Fan J, Zhang J (2020) Recent advances in the enhanced nitrogen removal by oxygen-increasing technology in constructed wetlands. Ecotoxicol Environ Saf 205:111330

    Article  CAS  Google Scholar 

  • Lu L, Liao X-d, Luo X-g (2017) Nutritional strategies for reducing nitrogen, phosphorus and trace mineral excretions of livestock and poultry. J Integr Agric 16:2815–2833

    Article  CAS  Google Scholar 

  • Luther AK, Desloover J, Fennell DE, Rabaey K (2015) Electrochemically driven extraction and recovery of ammonia from human urine. Water Res 87:367–377

    Article  CAS  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Ma B, Wang S, Cao S, Miao Y, Jia F, Du R, Peng Y (2016) Biological nitrogen removal from sewage via anammox: Recent advances. Bioresour Technol 200:981–990

    Article  CAS  Google Scholar 

  • Ma W-J, Li G-F, Huang B-C, Jin R-C (2020) Advances and challenges of mainstream nitrogen removal from municipal wastewater with anammox-based processes. Water Environ Res 92:1899–1909

    Article  CAS  Google Scholar 

  • Maguire RO, Kleinman PJ, Dell CJ, Beegle DB, Brandt RC, McGrath JM, Ketterings QM (2011) Manure application technology in reduced tillage and forage systems: a review. J Environ Qual 40:292–301

    Article  CAS  Google Scholar 

  • Malomo G, Bolu S, Olutade S, Suleiman Z (2014) Effects of alum (Aluminium sulphate) on faecal quality of broiler fed low protein diets. Res Opin Anim Vet Sci 4:133–137

    Google Scholar 

  • Manikandan A, Subramanian KS (2017) Study on mitigation of ammonia volatilization loss in urea through adsorbents. J Appl Nat Sci 9:688–692

    Article  CAS  Google Scholar 

  • Massel K, Campbell BC, Mace ES, Tai S, Tao Y, Worland BG, Jordan DR, Botella JR, Godwin ID (2016) Whole genome sequencing reveals potential new targets for improving nitrogen uptake and utilization in Sorghum bicolor. Front Plant Sci 7:1544

    Article  Google Scholar 

  • Mateo-Sagasta J, Zadeh SM, Turral H, Burke J (2017) Water pollution from agriculture: a global review. Executive summary: Food and Agriculture Organization of the United Nations

  • Mazid Miah M, Gaihre YK, Hunter G, Singh U, Hossain SA (2016) Fertilizer deep placement increases rice production: evidence from farmers’ fields in southern Bangladesh. Agron J 108(2):805–812

    Article  Google Scholar 

  • McCarty PL (2018) What is the best biological process for nitrogen removal: when and why? Environ Sci Technol 52:3835–3841

    Article  CAS  Google Scholar 

  • McTaggart I, Clayton H, Smith K (1994) Nitrous oxide flux from fertilised grassland: strategies for reducing emissions. Non-CO2 greenhouse gases: why and how to control? Springer, pp. 421–426.

  • Mejías JH, Salazar FJ, Pérez L, Hube S, Rodriguez M, Alfaro MA (2021) Nanofertilizers: a cutting-edge approach to increase nitrogen use efficiency in grasslands. Front Environ Sci 9:52

    Article  Google Scholar 

  • Meng F, Li M, Wang H, Xin L, Wu X, Liu X (2020) Encapsulating microscale zero valent iron-activated carbon into porous calcium alginate for the improvement on the nitrate removal rate and Fe0 utilization factor. Microporous Mesoporous Mater 307:110522

    Article  CAS  Google Scholar 

  • Miao L, Wang K, Wang S, Zhu R, Li B, Peng Y, Weng D (2014) Advanced nitrogen removal from landfill leachate using real-time controlled three-stage sequence batch reactor (SBR) system. Bioresour Technol 159:258–265

    Article  CAS  Google Scholar 

  • Miao L, Yang G, Tao T, Peng Y (2019) Recent advances in nitrogen removal from landfill leachate using biological treatments: a review. J Environ Manage 235:178–185

    Article  CAS  Google Scholar 

  • Minato EA, Cassim BMAR, Besen MR, Mazzi FL, Inoue TT, Batista MA (2020) Controlled-release nitrogen fertilizers: characterization, ammonia volatilization, and effects on second-season corn. Revista Brasileira de Ciência do Solo p. 44

  • Muster TH, Jermakka J (2017) Electrochemically-assisted ammonia recovery from wastewater using a floating electrode. Water Sci Technol 75:1804–1811

    Article  CAS  Google Scholar 

  • Nasielski J, Grant B, Smith W, Niemeyer C, Janovicek K, Deen B (2020) Effect of nitrogen source, placement and timing on the environmental performance of economically optimum nitrogen rates in maize. Field Crops Res 246:107686

    Article  Google Scholar 

  • Nawaz A, Lal R, Shrestha RK, Farooq M (2017) Mulching affects soil properties and greenhouse gas emissions under long-term no-till and plough-till systems in Alfisol of central Ohio. Land Degrad Dev 28:673–681

    Article  Google Scholar 

  • Neilson EH, Edwards AM, Blomstedt C, Berger B, Møller BL, Gleadow RM (2015) Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time. J Exp Bot 66:1817–1832

    Article  CAS  Google Scholar 

  • Nevins CJ, Lacey C, Armstrong S (2020) The synchrony of cover crop decomposition, enzyme activity, and nitrogen availability in a corn agroecosystem in the Midwest United States. Soil Tillage Res 197:104518

    Article  Google Scholar 

  • Nguyen GN, Joshi S, Kant S (2017) Water availability and nitrogen use in plants: effects, interaction, and underlying molecular mechanisms. Plant macronutrient use efficiency. Elsevier, pp 233–243

  • Nguyen GN, Panozzo J, Spangenberg G, Kant S (2016) Phenotyping approaches to evaluate nitrogen-use efficiency related traits of diverse wheat varieties under field conditions. Crop Pasture Sci 67:1139–1148

    Article  CAS  Google Scholar 

  • Oldroyd GE, Dixon R (2014) Biotechnological solutions to the nitrogen problem. Curr Opin Biotechnol 26:19–24

    Article  CAS  Google Scholar 

  • Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144

    Article  CAS  Google Scholar 

  • Öztürk N, Bektaş TEI (2004) Nitrate removal from aqueous solution by adsorption onto various materials. J Hazard Mater 112:155–162

    Article  Google Scholar 

  • Pandey B, Chen L (2021) Technologies to recover nitrogen from livestock manure: a review. Sci Total Environ 784:147098

    Article  CAS  Google Scholar 

  • Pandey P, Ge Y, Stoerger V, Schnable JC (2017) High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. Front Plant Sci 8:1348

    Article  Google Scholar 

  • Pennino MJ, Compton JE, Leibowitz SG (2017) Trends in drinking water nitrate violations across the United States. Environ Sci Technol 51:13450–13460

    Article  CAS  Google Scholar 

  • Perera MK, Englehardt JD, Dvorak AC (2019) Technologies for recovering nutrients from wastewater: a critical review. Environ Eng Sci 36:511–529

    Article  CAS  Google Scholar 

  • Pochana K, Keller J (1999) Study of factors affecting simultaneous nitrification and denitrification (SND). Water Sci Technol 39:61–68

    Article  CAS  Google Scholar 

  • Prado J, Chieppe J, Raymundo A, Fangueiro D (2020) Bio-acidification and enhanced crusting as an alternative to sulphuric acid addition to slurry to mitigate ammonia and greenhouse gases emissions during short term storage. J Clean Prod 263:121443

    Article  CAS  Google Scholar 

  • Qin M, Molitor H, Brazil B, Novak JT, He Z (2016) Recovery of nitrogen and water from landfill leachate by a microbial electrolysis cell–forward osmosis system. Bioresour Technol 200:485–492

    Article  CAS  Google Scholar 

  • Quemada M, Baranski M, Nobel-de Lange MNJ, Vallejo A, Cooper JM (2013) Meta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield. Agr Ecosyst Environ 174:1–10

    Article  CAS  Google Scholar 

  • Rahimi S, Modin O, Mijakovic I (2020) Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnol Adv 24:107570

    Article  Google Scholar 

  • Rezvani F, Sarrafzadeh M-H, Ebrahimi S, Oh H-M (2019) Nitrate removal from drinking water with a focus on biological methods: a review. Environ Sci Pollut Res 26:1124–1141

    Article  CAS  Google Scholar 

  • Richard CA, Hickey LT, Fletcher S, Jennings R, Chenu K, Christopher JT (2015) High-throughput phenotyping of seminal root traits in wheat. Plant Methods 11:13

    Article  Google Scholar 

  • Rittmann BE, McCarty PL (2012) Environmental biotechnology: principles and applications: Tata McGraw-Hill Education

  • Robles-Aguilar AA, Grunert O, Hernandez-Sanabria E, Mysara M, Meers E, Boon N, Jablonowski ND (2020) Effect of applying struvite and organic N as recovered fertilizers on the rhizosphere dynamics and cultivation of lupine (Lupinus angustifolius). Front Plant Sci 11:28

    Article  Google Scholar 

  • Ryu M-H, Zhang J, Toth T, Khokhani D, Geddes BA, Mus F, Garcia-Costas A, Peters JW, Poole PS, Ané J-M (2020) Control of nitrogen fixation in bacteria that associate with cereals. Nat Microbiol 5:314–330

    Article  CAS  Google Scholar 

  • Sadeghpour A, Ketterings QM, Godwin GS, Czymmek KJ (2017) Under-or over-application of nitrogen impact corn yield, quality, soil, and environment. Agron J 109:343–353

    Article  Google Scholar 

  • Sajeev MEP, Winiwarter W, Amon B (2018) Greenhouse gas and ammonia emissions from different stages of liquid manure management chains: abatement options and emission interactions. J Environ Qual 47:30–41

    Article  CAS  Google Scholar 

  • Sankaran S, Khot LR, Carter AH (2015a) Field-based crop phenotyping: Multispectral aerial imaging for evaluation of winter wheat emergence and spring stand. Comput Electron Agric 118:372–379

    Article  Google Scholar 

  • Sankaran S, Khot LR, Espinoza CZ, Jarolmasjed S, Sathuvalli VR, Vandemark GJ, Miklas PN, Carter AH, Pumphrey MO, Knowles NR (2015b) Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a review. Eur J Agron 70:112–123

    Article  Google Scholar 

  • Santhanam N (2009) Oilgae guide to algae-based wastewater treatment. Home of Algal Energy

  • Seefeldt LC, Hoffman BM, Dean DR (2009) Mechanism of Mo-dependent nitrogenase. Annu Rev Biochem 78:701–722

    Article  CAS  Google Scholar 

  • Senthilvel S, Vinod KK, Malarvizhi P, Maheswaran M (2008) QTL and QTL× environment effects on agronomic and nitrogen acquisition traits in rice. J Integr Plant Biol 50:1108–1117

    Article  CAS  Google Scholar 

  • Serra J, Cameira MdR, Cordovil CMdS, Hutchings NJ (2021) Development of a groundwater contamination index based on the agricultural hazard and aquifer vulnerability: application to Portugal. Sci Total Environ 772:145032

    Article  CAS  Google Scholar 

  • Sevda S, Sreekishnan TR, Pous N, Puig S, Pant D (2018) Bioelectroremediation of perchlorate and nitrate contaminated water: a review. Bioresour Technol 255:331–339

    Article  CAS  Google Scholar 

  • Sha Z, Ma X, Wang J, Lv T, Li Q, Misselbrook T, Liu X (2020) Effect of N stabilizers on fertilizer-N fate in the soil-crop system: a meta-analysis. Agr Ecosyst Environ 290:106763

    Article  CAS  Google Scholar 

  • Shao M-F, Zhang T, Fang HH-P (2010) Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Appl Microbiol Biotechnol 88:1027–1042

    Article  CAS  Google Scholar 

  • Sharif R, Mujtaba M, Ur RM, Shalmani A, Ahmad H, Anwar T, Tianchan D, Wang X (2018) The multifunctional role of chitosan in horticultural crops; a review. Molecules 23:872

    Article  Google Scholar 

  • Shi Y, Thomasson JA, Murray SC, Pugh NA, Rooney WL, Shafian S, Rajan N, Rouze G, Morgan CL, Neely HL (2016) Unmanned aerial vehicles for high-throughput phenotyping and agronomic research. PLoS ONE 11:e0159781

    Article  Google Scholar 

  • Shoda M, Ishikawa Y (2014) Heterotrophic nitrification and aerobic denitrification of high-strength ammonium in anaerobically digested sludge by Alcaligenes faecalis strain No. 4. J Biosci Bioeng 117:737–741

    Article  CAS  Google Scholar 

  • Siciliano A, Limonti C, Curcio GM, Molinari R (2020) Advances in struvite precipitation technologies for nutrients removal and recovery from aqueous waste and wastewater. Sustainability 12:7538

    Article  CAS  Google Scholar 

  • Siciliano A, Ruggiero C, De Rosa S (2013) A new integrated treatment for the reduction of organic and nitrogen loads in methanogenic landfill leachates. Process Saf Environ Prot 91:311–320

    Article  CAS  Google Scholar 

  • Song J, Srivastava V, Kohout T, Sillanpää M, Sainio T (2021) Montmorillonite-anchored magnetite nanocomposite for recovery of ammonium from stormwater and its reuse in adsorption of Sc3+. Nanotechnol Environ Eng 6:55

    Article  CAS  Google Scholar 

  • Spiess E, Humphrys C, Richner W, Schneider MK, Piepho H-P, Chervet A, Prasuhn V (2020) Does no-tillage decrease nitrate leaching compared to ploughing under a long-term crop rotation in Switzerland? Soil Tillage Res 199:104590

    Article  Google Scholar 

  • Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, Vries Wd, Wit CAd, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S (2015) Planetary boundaries: guiding human development on a changing planet. Science 347:1259855

    Article  Google Scholar 

  • Strous M, Kuenen JG, Jetten MS (1999) Key physiology of anaerobic ammonium oxidation. Appl Environ Microbiol 65:3248–3250

    Article  CAS  Google Scholar 

  • Subbarao G, Sahrawat KL, Nakahara K, Ishikawa T, Kishii M, Rao I, Hash C, George T, Rao PS, Nardi P (2012) Biological nitrification inhibition: a novel strategy to regulate nitrification in agricultural systems. Adv Agron 114:249–302

    Article  CAS  Google Scholar 

  • Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q (2014) Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet 46:652–656

    Article  CAS  Google Scholar 

  • Sutton MA, Bleeker A, Howard C, Erisman J, Abrol Y, Bekunda M, Datta A, Davidson E, de Vries W, Oenema O (2013) Our nutrient world. The challenge to produce more food & energy with less pollution: Centre for Ecology and Hydrology, Edinburgh

  • Suzuki T, Moribe M, Oyama Y, Niinae M (2012) Mechanism of nitrate reduction by zero-valent iron: equilibrium and kinetics studies. Chem Eng J 183:271–277

    Article  CAS  Google Scholar 

  • Talboys PJ, Heppell J, Roose T, Healey JR, Jones DL, Withers PJA (2016) Struvite: a slow-release fertiliser for sustainable phosphorus management? Plant Soil 401:109–123

    Article  CAS  Google Scholar 

  • Tan X, Xie G-J, Nie W-B, Xing D-F, Liu B-F, Ding J, Ren N-Q (2021) Fe(III)-mediated anaerobic ammonium oxidation: A novel microbial nitrogen cycle pathway and potential applications. Crit Rev Environ Sci Technol 15:1–33

    Google Scholar 

  • Tang S, Liao Y, Xu Y, Dang Z, Zhu X, Ji G (2020) Microbial coupling mechanisms of nitrogen removal in constructed wetlands: a review. Bioresour Technol 314:123759

    Article  CAS  Google Scholar 

  • Thapa R, Mirsky SB, Tully KL (2018) Cover crops reduce nitrate leaching in agroecosystems: a global meta-analysis. J Environ Qual 47:1400–1411

    Article  CAS  Google Scholar 

  • Tyagi S, Rawtani D, Khatri N, Tharmavaram M (2018) Strategies for nitrate removal from aqueous environment using nanotechnology: a review. J Water Process Eng 21:84–95

    Article  Google Scholar 

  • Uludag-Demirer S, Demirer GN, Chen S (2005) Ammonia removal from anaerobically digested dairy manure by struvite precipitation. Process Biochem 40:3667–3674

    Article  CAS  Google Scholar 

  • UNECE (2012) Draft guidance document for preventing and abating ammonia emissions from agricultural sources. United Nations Economic Commission for Europe, Convention on Long-range Transboundary Air Pollution, Geneva. www.unece.org/fileadmin/DAM/env/documents/2012/EB/N_6_21_Ammonia_Guidance_Document_Version_20_August_2011.pdf

  • USEPA (2017) Estimated Nitrate Concentrations in Groundwater Used for Drinking. https://19january2017snapshot.epa.gov/nutrient-policy-data/estimated-nitrate-concentrations-groundwater-used-drinking_html.

  • Usman M, Byrne JM, Chaudhary A, Orsetti S, Hanna K, Ruby C, Kappler A, Haderlein SB (2018) Magnetite and green rust: synthesis, properties, and environmental applications of mixed-valent iron minerals. Chem Rev 118:3251–3304

    Article  CAS  Google Scholar 

  • Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, Rehman Hu, Ashraf I, Sanaullah M (2020) Nanotechnology in agriculture: current status, challenges and future opportunities. Sci Total Environ 721:137778

    Article  CAS  Google Scholar 

  • Valkama E, Lemola R, Känkänen H, Turtola E (2015) Meta-analysis of the effects of undersown catch crops on nitrogen leaching loss and grain yields in the Nordic countries. Agr Ecosyst Environ 203:93–101

    Article  CAS  Google Scholar 

  • Varma M, Gupta AK, Ghosal PS, Majumder A (2021) A review on performance of constructed wetlands in tropical and cold climate: Insights of mechanism, role of influencing factors, and system modification in low temperature. Sci Total Environ 755:142540

    Article  CAS  Google Scholar 

  • Virlet N, Sabermanesh K, Sadeghi-Tehran P, Hawkesford MJ (2017) Field Scanalyzer: an automated robotic field phenotyping platform for detailed crop monitoring. Funct Plant Biol 44:143–153

    Article  Google Scholar 

  • Wagner C, Nyord T, Vestergaard AV, Hafner SD, Pacholski AS (2021) Acidification effects on in situ ammonia emissions and cereal yields depending on slurry type and application method. Agriculture 11:1053

    Article  CAS  Google Scholar 

  • Wakida FT, Lerner DN (2005) Non-agricultural sources of groundwater nitrate: a review and case study. Water Res 39:3–16

    Article  CAS  Google Scholar 

  • Wang F, Liu D, Zheng P, Ma X (2016) Synthesis of rectorite/Fe3O4-CTAB composite for the removal of nitrate and phosphate from water. J Ind Eng Chem 41:165–174

    Article  Google Scholar 

  • Wang W, Z-h J, T-l Li, Zhang H, Gao S (2006) Preparation of spherical iron nanoclusters in ethanol–water solution for nitrate removal. Chemosphere 65:1396–1404

    Article  CAS  Google Scholar 

  • Wang X, Wang J (2013) Nitrate removal from groundwater using solid-phase denitrification process without inoculating with external microorganisms. Int J Environ Sci Technol 10:955–960

    Article  CAS  Google Scholar 

  • Wang Y, Cai Z, Sheng S, Pan F, Chen F, Fu J (2020) Comprehensive evaluation of substrate materials for contaminants removal in constructed wetlands. Sci Total Environ 701:134736

    Article  CAS  Google Scholar 

  • Wei S, Chadwick DR, Amon B, Dong H (2022) Comparison of nitrogen losses from different manure treatment and application management systems in China. J Environ Manage 306:114430

    Article  CAS  Google Scholar 

  • Wei W, Tong J, Hu BX (2019) Study on ecological dynamic model for phytoremediation of farmland drainage water. J Hydrol 578:124026

    Article  CAS  Google Scholar 

  • Wei X, Chen J, Gao B, Wang Z (2020) Role of controlled and slow release fertilizers in fruit crop nutrition. Fruit Crops. 18:555–566

    Article  Google Scholar 

  • Weyers S, Thom M, Forcella F, Eberle C, Matthees H, Gesch R, Ott M, Feyereisen G, Strock J, Wyse D (2019) Reduced potential for nitrogen loss in cover crop–soybean relay systems in a cold climate. J Environ Qual 48:660–669

    Article  CAS  Google Scholar 

  • WHO (2006) A compendium of standards for wastewater reuse in the Eastern Mediterranean Region. https://apps.who.int/iris/bitstream/handle/10665/116515/dsa1184.pdf;sequence=1.

  • Winkler MKH, Straka L (2019) New directions in biological nitrogen removal and recovery from wastewater. Curr Opin Biotechnol 57:50–55

    Article  CAS  Google Scholar 

  • Wittwer RA, van der Heijden MG (2020) Cover crops as a tool to reduce reliance on intensive tillage and nitrogen fertilization in conventional arable cropping systems. Field Crops Res 249:107736

    Article  Google Scholar 

  • Wu X, Modin O (2013) Ammonium recovery from reject water combined with hydrogen production in a bioelectrochemical reactor. Bioresour Technol 146:530–536

    Article  CAS  Google Scholar 

  • Xia L, Lam SK, Chen D, Wang J, Tang Q, Yan X (2017) Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Glob Change Biol 23:1917–1925

    Article  Google Scholar 

  • Xu K, Lin F, Dou X, Zheng M, Tan W, Wang C (2018) Recovery of ammonium and phosphate from urine as value-added fertilizer using wood waste biochar loaded with magnesium oxides. J Clean Prod 187:205–214

    Article  CAS  Google Scholar 

  • Xu X, He P, Wei J, Cui R, Sun J, Qiu S, Zhao S, Zhou W (2021) Use of controlled-release urea to improve yield, nitrogen utilization, and economic return and reduce nitrogen loss in wheat-maize crop rotations. Agronomy 11:25

    Article  CAS  Google Scholar 

  • Xu Z, Li C, Zhang C, Yu Y, van der Werf W, Zhang F (2020) Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use a meta-analysis. Field Crops Res 246:107661

    Article  Google Scholar 

  • Yang MJ, Wang CR, Hassan MA, Wu YY, Xia XC, Shi SB, Xiao YG, He ZH (2021) QTL mapping of seedling biomass and root traits under different nitrogen conditions in bread wheat (Triticum aestivum L.). J Integr Agric 20:1180–1192

    Article  CAS  Google Scholar 

  • Yang S, Yang F (2011) Nitrogen removal via short-cut simultaneous nitrification and denitrification in an intermittently aerated moving bed membrane bioreactor. J Hazard Mater 195:318–323

    Article  CAS  Google Scholar 

  • Yang WH, Weber KA, Silver WL (2012) Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nat Geosci 5:538–541

    Article  CAS  Google Scholar 

  • Yang Y, Jin Z, Quan X, Zhang Y (2018) Transformation of nitrogen and iron species during nitrogen removal from wastewater via feammox by adding ferrihydrite. ACS Sustain Chem Eng 6:14394–14402

    Article  CAS  Google Scholar 

  • Yu C, Huang X, Chen H, Godfray HCJ, Wright JS, Hall JW, Gong P, Ni S, Qiao S, Huang G, Xiao Y, Zhang J, Feng Z, Ju X, Ciais P, Stenseth NC, Hessen DO, Sun Z, Yu L, Cai W, Fu H, Huang X, Zhang C, Liu H, Taylor J (2019) Managing nitrogen to restore water quality in China. Nature 567:516–520

    Article  CAS  Google Scholar 

  • Zhang F, Peng Y, Sun J, Liu Y, Yin W, Wang Y, Lu X, Zhao L (2021a) Ultra-low energy consumption process (PN+Anammox) for enhanced nitrogen removal from decentralized sewage. Chem Eng J 426:130769

    Article  CAS  Google Scholar 

  • Zhang M, Song G, Gelardi DL, Huang L, Khan E, Mašek O, Parikh SJ, Ok YS (2020) Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water Res 186:116303

    Article  CAS  Google Scholar 

  • Zhang T, Fang C, Li P, Jiang R (2014) Application of struvite process for nutrient recovery from anaerobic digesters of livestock wastewater. Environ Prot Eng 40:29–42

    Google Scholar 

  • Zhang W, Liang Z, He X, Wang X, Shi X, Zou C, Chen X (2019) The effects of controlled release urea on maize productivity and reactive nitrogen losses: a meta-analysis. Environ Pollut 246:559–565

    Article  CAS  Google Scholar 

  • Zhang Z, Yan W, Messan O, Fang J, Jackson WA (2021b) Abiotic reduction of nitrate and chlorate by green rust. ACS Earth Space Chem 5:2042–2051

    Article  CAS  Google Scholar 

  • Zheng Y, Cao T, Zhang Y, Xiong J, Dzakpasu M, Yang D, Yang Q, Liu Y, Li Q, Liu S, Wang X (2021) Characterization of dissolved organic matter and carbon release from wetland plants for enhanced nitrogen removal in constructed wetlands for low C-N wastewater treatment. Chemosphere 273:129630

    Article  CAS  Google Scholar 

  • Zhu G, Peng Y, Li B, Guo J, Yang Q, Wang S (2008) Biological removal of nitrogen from wastewater. Rev Environ Contam Toxicol 15:159–195

    Article  Google Scholar 

Download references

Funding

M. Usman gratefully acknowledges the OmanTel research Grant (EG/SQU-OT/21/05) for supporting this work. M. Sanaullah acknowledges the funding from the UK Research and Innovation (UKRI) in context of the “South Asian Nitrogen Hub.” S. Li is financially supported by the National Natural Science Foundation of China (Grant No. 42007294).

Author information

Authors and Affiliations

Authors

Contributions

MU contributed to conceptualization, writing of the original draft, and writing, reviewing, & editing of the manuscript. MS contributed to writing of the original draft and writing, reviewing, & editing of the manuscript. AU contributed to writing of the original draft and writing, reviewing, & editing of the manuscript. SL contributed to writing of the original draft and writing, reviewing, & editing of the manuscript. MF contributed to conceptualization, writing of the original draft, and writing, reviewing, & editing of the manuscript.

Corresponding authors

Correspondence to Muhammad Usman or Muhammad Farooq.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usman, M., Sanaullah, M., Ullah, A. et al. Nitrogen Pollution Originating from Wastewater and Agriculture: Advances in Treatment and Management. Reviews Env.Contamination (formerly:Residue Reviews) 260, 9 (2022). https://doi.org/10.1007/s44169-022-00010-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44169-022-00010-0

Navigation