Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2281 (2012). https://doi.org/10.1109/TPAMI.2012.120
Article
Google Scholar
Amos, B., Ludwiczuk, B., Satyanarayanan, M. OpenFace: a general-purpose face recognition library with mobile applications. CMU-CS-16-118, CMU School of Computer Science, Tech. Rep. (2016). http://cmusatyalab.github.io/openface/
Ballew, C.C., Todorov, A.: Predicting political elections from rapid and unreflective face judgments. Proc. Natl. Acad. Sci. USA 104(46), 17948–17953 (2007). https://doi.org/10.1073/pnas.0705435104. www.pnas.org/cgi/doi/10.1073/pnas.0705435104
Bejnordi, B.E., Veta, M., Van Diest, P.J., Van Ginneken, B., Karssemeijer, N., Litjens, G., Van Der Laak, J.A., Hermsen, M., Manson, Q.F., Balkenhol, M., Geessink, O., Stathonikos, N., Van Dijk, M.C., Bult, P., Beca, F., Beck, A.H., Wang, D., Khosla, A., Gargeya, R., Irshad, H., Zhong, A., Dou, Q., Li, Q., Chen, H., Lin, H.J., Heng, P.A., Haß, C., Bruni, E., Wong, Q., Halici, U., Oner, M.A., Cetin-Atalay, R., Berseth, M., Khvatkov, V., Vylegzhanin, A., Kraus, O., Shaban, M., Rajpoot, N., Awan, R., Sirinukunwattana, K., Qaiser, T., Tsang, Y.W., Tellez, D., Annuscheit, J., Hufnagl, P., Valkonen, M., Kartasalo, K., Latonen, L., Ruusuvuori, P., Liimatainen, K., Albarqouni, S., Mungal, B., George, A., Demirci, S., Navab, N., Watanabe, S., Seno, S., Takenaka, Y., Matsuda, H., Phoulady, H.A., Kovalev, V., Kalinovsky, A., Liauchuk, V., Bueno, G., Fernandez-Carrobles, M.M., Serrano, I., Deniz, O., Racoceanu, D., Venâncio, R.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA J. Am. Med. Assoc. 318(22), 2199–2210 (2017). https://doi.org/10.1001/jama.2017.14585
Article
Google Scholar
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Article
Google Scholar
Buolamwini, J.: Opinion: when the robot doesn’t see dark skin. In: New york times (2018). https://www.nytimes.com/2018/06/21/opinion/facial-analysis-technology-bias.html
Buolamwini, J., Gebru, T. Gender shades: intersectional accuracy disparities in commercial gender classification. In: Friedler, S.A.,Wilson, C. (eds.) Proceedings of the 1st Conference on Fairness, Accountability and Transparency, vol. 81, pp. 77–91 New York, NY, USA (2018). http://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf
Caliskan, A., Bryson, J.J., Narayanan, A.: Semantics derived automatically from language corpora contain human-like biases. Tech. Rep. 6334 Sci. (2017). https://doi.org/10.1126/science.aal4230. https://science.sciencemag.org/content/356/6334/183/tab-pdf
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (2012). https://doi.org/10.1109/CVPR.2012.6248074
Article
Google Scholar
Greenwald, A.G., McGhee, D.E., Schwartz, J.L.: Measuring individual differences in implicit cognition: the implicit association test. J. Personal. Social Psychol. 74(6), 1464–80 (1998). http://www.ncbi.nlm.nih.gov/pubmed/9654756
Greenwald, A.G., Poehlman, T.A., Uhlmann, E.L., Banaji, M.R.: Understanding and using the Implicit Association Test: III. Meta-analysis of predictive validity. J. Personal. Social Psychol. 97(1), 17 (2009)
Article
Google Scholar
Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: European conference on computer vision, Springer, 87–102 (2016). http://arxiv.org/abs/1607.08221
Hamermesh, D.S., Biddle, J.E.: Beauty and the labor market. Am. Econ. Rev. 84(5), 1174–1194 (1994). http://www.jstor.org/stable/2117767
Hao, K.: The two-year fight to stop Amazon from selling face recognition to the police. MIT. Tech. Rev. (2020). https://www.technologyreview.com/2020/06/12/1003482/amazon-stopped-selling-police-face-recognition-fight/
Harwell, D.: A face-scanning algorithm increasingly decides whether you deserve the job. In: Washington Post (2019). https://www.washingtonpost.com/technology/2019/10/22/ai-hiring-face-scanning-algorithm-increasingly-decides-whether-you-deserve-job/
Hassin, R., Trope, Y.: Facing faces: studies on the cognitive aspects of physiognomy. J. Pers. Soc. Psychol. 78(5), 837–852 (2000). https://doi.org/10.1037/0022-3514.78.5.837
Article
Google Scholar
Hendricks, L.A., Burns, K., Saenko, K., Darrell, T., Rohrbach, A.: Women also snowboard: overcoming bias in captioning models. CoRR (2018). https://doi.org/10.1007/978-3-030-01219-9fng47
Article
Google Scholar
Jacques Junior, J.C., Andujar, C., BaroBar, X., Jair Escalante, H., Guyon, I., van Gerven, M.A., van Lier, R., Escalera, S., Jair Escalanteis, H.: First impressions: a survey on computer vision-based apparent personality trait analysis. Tech. Rep. arXiv. (2018). arXiv:1804.08046https://www.theguardian.com/technology/2017/apr/13/
Kay, M., Matuszek, C., Munson, S.A.: Unequal representation and gender stereotypes in image search results for occupations. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems—CHI’15, pp. 3819–3828. ACM Press, New York (2015). https://doi.org/10.1145/2702123.2702520. http://dl.acm.org/citation.cfm?doid=2702123.2702520
Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regression trees. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1867–1874 (2014)
Keating, C.F., Randall, D., Kendrick, T.: Presidential physiognomies: altered images, altered perceptions. Polit. Psychol. 20(3), 593–610 (1999). https://doi.org/10.1111/0162-895X.00158. /record/1999-11324-006
Kleinberg, J., Lakkaraju, H., Leskovec, J., Ludwig, J., Mullainathan, S.: Human decisions and machine predictions. Tech. Rep. 23180 Nat. Bureau Econ. Res. (2017). https://doi.org/10.3386/w23180. http://www.nber.org/papers/w23180
Ko, T.: A survey on behavior analysis in video surveillance for homeland security applications. Proc. Appl. Imagery Pattern Recognit. Workshop (2008). https://doi.org/10.1109/AIPR.2008.4906450
Article
Google Scholar
Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (2010). https://doi.org/10.1109/CVPR.2010.5539872
Article
Google Scholar
Manjunatha, V., Saini, N., Davis, L.: Explicit bias discovery in visual question answering models. 9554–9563 (2019). https://doi.org/10.1109/CVPR.2019.00979
McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction. (2018). http://arxiv.org/abs/1802.03426
Mueller, U., Mazur, A.: Facial dominance of west point cadets as a predictor of later military rank*. Soc. Forces 74(3), 823–850 (1996). https://doi.org/10.1093/sf/74.3.823
Article
Google Scholar
Murgia, M.: Who’s using your face? The ugly truth about facial recognition. Financial Times. https://www.ft.com/content/cf19b956-60a2-11e9-b285-3acd5d43599e
Nagpal, S., Singh, M., Singh, R., Vatsa, M.: Deep learning for face recognition: pride or prejudiced? (2019). http://arxiv.org/abs/1904.01219
Nex, F., Remondino, F.: UAV for 3D mapping applications: a review. (2014). https://doi.org/10.1007/s12518-013-0120-x
Oosterhof, N.N., Todorov, A.: The functional basis of face evaluation. Tech. Rep. (2008). https://www.pnas.org/content/105/32/11087
Pearson, J.: Microsoft deleted a massive facial recognition database, but it’s not dead. Vice. https://www.vice.com/en_us/article/a3x4mp/microsoft-deleted-a-facial-recognition-database-but-its-not-dead
Raghavan, M., Barocas, S., Kleinberg, J., Levy, K.: Mitigating bias in algorithmic hiring: evaluating claims and practices. FAT* 2020 Proc. 2020 Conf. Fairness Account. Transp. Assoc. Comput. Mach. Inc. (2020). https://doi.org/10.1145/3351095.3372828
Article
Google Scholar
Raji, I.D., Gebru, T., Mitchell, M., Buolamwini, J., Lee, J., Denton, E.: Saving face: investigating the ethical concerns of facial recognition auditing. In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pp. 145–151 (2020)
Rezlescu, C., Duchaine, B., Olivola, C.Y., Chater, N.: Unfakeable facial configurations affect strategic choices in trust games with or without information about past behavior. PLoS ONE 7(3) (2012). https://doi.org/10.1371/journal.pone.0034293. https://pubmed.ncbi.nlm.nih.gov/22470553/
Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?” Explaining the predictions of any classifier. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, New York, NY, USA, vol. 13–17, pp. 1135–1144 (2016). https://doi.org/10.1145/2939672.2939778. https://dl.acm.org/doi/10.1145/2939672.2939778
Safra, L., Chevallier, C., Grèzes, J., Baumard, N.: Tracking historical changes in trustworthiness using machine learning analyses of facial cues in paintings. Nat. Commun. 11(1), 4728 (2020). https://doi.org/10.1038/s41467-020-18566-7. http://www.nature.com/articles/s41467-020-18566-7
Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: IEEE CVPR, pp. 815–823 (2015). https://doi.org/10.1109/CVPR.2015.7298682. http://arxiv.org/abs/1503.03832
Snow, J.: Amazon’s face recognition falsely matched 28 members of congress with mugshots. In: American Civil Liberties Union (2018). https://www.aclu.org/blog/privacy-technology/surveillance-technologies/amazons-face-recognition-falsely-matched-28
Todorov, A.: Face Value: The Irresistible Influence of First Impressions. Princeton University Press, Princeton (2017)
Google Scholar
Todorov, A., Mandisodza, A.N., Goren, A., Hall, C.C.: Inferences of competence from faces predict election outcomes. Science 308(5728), 1623–1626 (2005). https://doi.org/10.1126/science.1110589
Article
Google Scholar
Todorov, A., Dotsch, R., Wigboldus, D.H.J., Said, C.P.: Data-driven methods for modeling social perception. Social Person. Psychol. Compass 5(10), 775–791 (2011). https://doi.org/10.1111/j.1751-9004.2011.00389.x. http://doi.wiley.com/10.1111/j.1751-9004.2011.00389.x
Todorov, A., Dotsch, R., Porter, J.M., Oosterhof, N.N., Falvello, V.B.: Validation of data-driven computational models of social perception of faces people instantly form impressions from facial. Emotion 13(4), 724–738 (2013). https://doi.org/10.1037/a0032335.supp. http://tlab.princeton.edu/publication_files/TodorovDotschetalEmotion2013.pdf
Torralba, A., Efros, A.A.: Unbiased look at dataset bias. CVPR, IEEE, 1521–1528 (2011)
Willis, J., Todorov, A.: First impressions. Psychol. Sci. 17(7), 592–598 (2006). https://doi.org/10.1111/j.1467-9280.2006.01750.x. http://journals.sagepub.com/doi/10.1111/j.1467-9280.2006.01750.x
Wilson, B., Hoffman, J., Morgenstern, J.: Predictive inequity in object detection. arXiv preprint 190211097 (2019). http://arxiv.org/abs/1902.11097
van’t Wout, M., Sanfey, A.G.: Friend or foe: the effect of implicit trustworthiness judgments in social decision-making. Cognition 108(3), 796–803 (2008). https://doi.org/10.1016/j.cognition.2008.07.002. https://pubmed.ncbi.nlm.nih.gov/18721917/
Yang, K., Mall, S., Glaser, N.: Prediction of personality first impressions with deep bimodal LSTM. Tech. Rep. arXiv. (2017). http://cs231n.stanford.edu/reports/2017/pdfs/713.pdf
Zebrowitz, L.A., Andreoletti, C., Collins, M.A., Lee, S.Y., Blumenthal, J.: Bright, bad, babyfaced boys: appearance stereotypes do not always yield self-fulfilling prophecy effects. J. Personal. Social Psychol. 75(5), 1300–1320 (1998). https://doi.org/10.1037/0022-3514.75.5.1300
Zhao, J., Wang, T., Yatskar, M., Ordonez, V., Chang, K.W.: Men also like shopping: reducing gender bias amplification using corpus-level constraints. EMNLP 2017 Conf. Empirical Methods Nat. Lang. Process. Proc. Assoc. Comput. Linguistics (ACL) (2017). https://doi.org/10.18653/v1/d17-1323
Article
Google Scholar