Skip to main content
Log in

Effects of temperature up-shift and UV-A radiation on fatty acids content and expression of desaturase genes in cyanobacteria Microcystis aeruginosa: stress tolerance and acclimation responses

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Temperature up-shift and UV-A radiation effects on growth, lipid damage, fatty acid (FA) composition and expression of desaturase genes desA and desB were investigated in the cyanobacteria Microcystis aeruginosa. Although UV-A damaging effect has been well documented, reports on the interactive effects of UV radiation exposure and warming on cyanobacteria are scarce. Temperature and UV-A doses were selected based on the physiological responses previously obtained by studies with the same M. aeruginosa strain used in this study. Cells pre-grown at 26 °C were incubated at the same temperature or 29 °C and exposed to UV-A + PAR and only PAR for 9 days. Growth rate was significantly affected by UV-A radiation independently of the temperature throughout the experiment. High temperature produced lipid damage significantly higher throughout the experiment, decreasing at day 9 as compared to 26 °C. In addition, the cells grown at 29 °C under UV-A displayed a decrease in polyunsaturated FA (PUFA) levels, with ω3 PUFA being mostly affected at the end of exposure. Previously, we reported that UV-A-induced lipid damage affects differentially ω3 and ω6 PUFAs. We report that UV-A radiation leads to an upregulation of desA, possibly due to lipid damage. In addition, the temperature up-shift upregulates desA and desB regardless of the radiation. The lack of lipid damage for UV-A on ω3 could explain the lack of transcription induction of desB. The significant ω6 decrease at 26 °C in cells exposed to UV-A could be due to the lack of upregulation of desA.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, FR, upon reasonable request.

References

  1. Paerl, H. W., Fulton, R. S., Moisander, P. H., & Dyble, J. (2001). Harmful freshwater algal blooms with an emphasis on cyanobacteria. The Scientific World Journal, 1, 76–113. https://doi.org/10.1100/tsw.2001.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chorus, I., & Bartram, J. (Eds.). (1999). Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management (1st ed.). CRC Press.

    Google Scholar 

  3. Elliott, J. A., Jones, I. D., & Thackeray, S. J. (2006). Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake. Hydrobiologia, 559(1), 401–411. https://doi.org/10.1007/s10750-005-1233-y

    Article  CAS  Google Scholar 

  4. Jöhnk, K. D., Huisman, J., Sharples, J., Sommeijer, B., Visser, P. M., & Stroom, J. M. (2008). Summer heatwaves promote blooms of harmful cyanobacteria. Glob Ch Biol, 14(3), 495–512. https://doi.org/10.1111/j.1365-2486.2007.01510.x

    Article  Google Scholar 

  5. Fischetti, M. (2013). Deep heat threatens marine life. Scientific American, 308(4), 92. https://doi.org/10.1038/scientificamerican0413-92

    Article  PubMed  Google Scholar 

  6. IPCC. (2001). Climate change 2001: the scientific basis. In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, & C. A. Johnson (Eds.), Contribution of working group i to the third assessment report of the intergovernmental panel on climate change (3rd ed., p. 881). Cambridge University Press.

    Google Scholar 

  7. Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M. H., & Visser, P. M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology, 16, 471–483. https://doi.org/10.1038/s41579-018-0040-1

    Article  CAS  PubMed  Google Scholar 

  8. Villafañe, V. E., Cabrerizo, M. J., Carrillo, P., Hernando, M. P., Medina-Sánchez, J. M., Narvarte, M. A., Saad, J. F., Valiñas, M. S., & Helbling, E. W. (2022). Global change effects on plankton from Atlantic Patagonian coastal waters: Role of interacting drivers. In E. W. Helbling, M. A. Narvarte, R. A. González, & V. E. Villafañe (Eds.), Global change in Atlantic coastal Patagonian ecosystems: a journey through time (pp. 117–150). Springer.

    Chapter  Google Scholar 

  9. Huisman, J., Sharples, J., Stroom, J. M., Visser, P. M., Kardinaal, W. E. A., Verspagen, J. M. H., & Sommeijer, B. (2004). Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology, 85(11), 2960–2970. https://doi.org/10.1890/03-0763

    Article  Google Scholar 

  10. Walsby, A. E., Hayes, P. K., Boje, R., & Stal, L. J. (1997). The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. New Phytologist, 136(3), 407–417. https://doi.org/10.1046/j.1469-8137.1997.00754.x

    Article  PubMed  Google Scholar 

  11. de la Rosa, F., De Troch, M., Malanga, G., & Hernando, M. (2021). Physiological responses and specific fatty acids composition of Microcystis aeruginosa exposed to total solar radiation and increased temperature. Photochemical & Photobiological Sciences, 20, 805–821. https://doi.org/10.1007/s43630-021-00061-7

    Article  CAS  Google Scholar 

  12. He, Y. Y., & Klisch & M., Häder, D. P. (2002). Adaptation of cyanobacteria to UV-B stress correlated with oxidative stress and oxidative damage. Photochemistry and Photobiology, 76, 188–196. https://doi.org/10.1562/0031-8655(2002)076%3c0188:aoctub%3e2.0.co;2

    Article  CAS  PubMed  Google Scholar 

  13. de la Rosa, F., De Troch, M., Malanga, G., & Hernando, M. (2020). Differential sensitivity of fatty acids and physiological responses of Microcystis aeruginosa (Cyanobacteria) exposed to increased temperature. Comp Biochem Physiol, Part C: Toxicol and Pharmacol, 235, 108773. https://doi.org/10.1016/j.cbpc.2020.108773

    Article  CAS  Google Scholar 

  14. Hernando, M., Crettaz Minaglia, M. C., Malanga, G., Andrinolo, D., Houghton, C., Sedan, D., Rosso, L., & Giannuzzi, L. (2018). Physiological responses and toxin production of Microcystis aeruginosa in short term exposure to solar UV radiation. Photochem and Photobiol Sci, 17, 69–80.

    Article  CAS  Google Scholar 

  15. Chandra, R., Pons-Faudoa, F. P., Saldívar, R. P., & Rittmann, B. E. (2020). Effect of ultraviolet exposure on production of mycosporine-like amino acids and lipids by Lyngbya purpurem. Biomas and Bioenerg, 134, 105475. https://doi.org/10.1016/j.biombioe.2020.105475

    Article  CAS  Google Scholar 

  16. Murata, N., & Nishida, I. (1987). Lipids of blue-green algae (cyanobacteria). In P. K. Stumpf (Ed.), Biochemistry of plants, lipids: structure and function (pp. 315–347). Academic Press.

    Google Scholar 

  17. Gombos, Z., Kanervo, E., Tsvetkova, N., Sakamoto, T., Aro, E. M., & Murata, N. (1997). Genetic enhancement of the ability to tolerate photoinhibition by introduction of unsaturated bonds into membrane glycerolipids. Plant Physiology, 115, 551–559. https://doi.org/10.1104/pp.115.2.551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chapman, D. (1975). Phase transitions and fluidity characteristics of lipids and cell membranes. Quarterly Reviews of Biophysics, 8(2), 185–235. https://doi.org/10.1017/s0033583500001797

    Article  CAS  PubMed  Google Scholar 

  19. Hazel, J. R. (1995). Thermal adaptation in biological membranes: Is homeoviscous adaptation the explanation? Annual Review of Physiology, 57, 19–42. https://doi.org/10.1146/annurev.ph.57.030195.000315

    Article  CAS  PubMed  Google Scholar 

  20. Wada, H., & Murata, N. (1990). Temperature-induced changes in the fatty acid composition of the cyanobacterium, Synechocystis PCC6803. Plant Physiology, 92(4), 1062–1069. https://doi.org/10.1104/pp.92.4.1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Murata, N. (1989). Low-temperature effects on cyanobacterial membranes. J Bioenerg and Biomembr, 21, 61–75. https://doi.org/10.1007/BF00762212

    Article  CAS  Google Scholar 

  22. Singh, S. C., Sinha, R. P., & Häder, D. P. (2002). Role of lipids and fatty acids in stress tolerance in cyanobacteria. Acta Protozoologica, 41(4), 297–308.

    CAS  Google Scholar 

  23. Murata, N., & Wada, H. (1995). Acyl lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. The Biochemical Journal, 308, 1–8. https://doi.org/10.1042/bj3080001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wada, H., Gombos, Z., & Murata, N. (1990). Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature, 347, 200–203. https://doi.org/10.1038/347200a0

    Article  CAS  PubMed  Google Scholar 

  25. Sakamoto, T., Los, D. A., Higashi, S., Wada, H., Nishida, I., Ohmori, M., & Murata, N. (1994). Cloning of ω3 desaturase from cyanobacteria and its use in altering the degree of membrane-lipid unsaturation. Plant Molecular Biology, 26, 249–263. https://doi.org/10.1007/BF00039536

    Article  CAS  PubMed  Google Scholar 

  26. Sakamoto, T., Wada, H., Nishida, I., Ohmori, M., & Murata, N. (1994). Δ9 acyl-lipid desaturases of cyanobacteria. Molecular cloning and substrate specificities in terms of fatty acids, sn-positions and polar head groups. Journal of Biological Chemistry, 269, 25576–25580. https://doi.org/10.1016/S0021-9258(18)47288-2

    Article  CAS  PubMed  Google Scholar 

  27. Mironov, K. S., Sidorov, R. A., Trofimova, M. S., Bedbenov, V. S., Tsydendambaev, V. D., Allakhverdiev, S. I., & Los, D. A. (2012). Light-dependent cold-induced fatty acid unsaturation, changes in membrane fluidity, and alterations in gene expression in Synechocystis. Biochimica et Biophysica Acta Bioenergy, 1817(8), 1352–1359. https://doi.org/10.1016/j.bbabio.2011.12.011

    Article  CAS  Google Scholar 

  28. Sakamoto, T., & Bryant, D. A. (1997). Temperature-regulated mRNA accumulation and stabilization for fatty acid desaturase genes in the cyanobacterium Synechococcus sp. strain PCC 7002. Molecular Microbiology, 23, 1281–1292. https://doi.org/10.1016/j.bbabio.2011.12.011

    Article  CAS  PubMed  Google Scholar 

  29. Martin, R. M., Moniruzzaman, M., Stark, G. F., Gann, E. R., Derminio, D. S., Wei, B., & Wilhelm, S. W. (2020). Episodic decrease in temperature increases mcy gene transcription and cellular microcystin in continuous cultures of Microcystis aeruginosa PCC 7806. Frontiers in Microbiology, 11, 601864. https://doi.org/10.3389/fmicb.2020.601864

    Article  PubMed  PubMed Central  Google Scholar 

  30. Los, D., Horvath, I., Vigh, L., & Murata, N. (1993). The temperature-dependent expression of the desaturase gene desA in Synechocystis PCC6803. FEBS Letters, 318(1), 57–60. https://doi.org/10.1016/0014-5793(93)81327-v

    Article  CAS  PubMed  Google Scholar 

  31. Rosso, L., Sedan, D., Kolman, M., Caixach, J., Flores, C., Oteiza, J. M., Salerno, G. L., Echenique, R., Giannuzzi, L., & Andrinolo, D. (2014). Microcystis aeruginosa strain Mcyst-LR producer from Buenos Aires province Argentina. J Coast Life Med. https://doi.org/10.12980/JCLM.2.2014JCLM-2014-0002

    Article  Google Scholar 

  32. Rippka, R., Deruells, J., Waterburry, J. B., Herdman, M., & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiol, 111, 1–61. https://doi.org/10.1099/00221287-111-1-1

    Article  Google Scholar 

  33. Villafañe, V. E., & Reid, F. M. H. (1995). Métodos de microscopía para la cuantificación del fitoplancton. In K. Alveal, M. E. Ferreiro, E. C. Oliviera, & M. A. Ferreiro (Eds.), Manual de métodos ficológicos (pp. 169–185). Universidad de Concepción.

    Google Scholar 

  34. Malanga, G., & Puntarulo, S. (1995). Oxidative stress and antioxidant content in Chlorella vulgaris after exposure to ultraviolet-B radiation. Physiologia Plantarum, 94, 672–679. https://doi.org/10.1111/j.1399-3054.1995.tb00983.x

    Article  CAS  Google Scholar 

  35. Abdulkadir, S., & Tsuchiya, M. (2008). One-step method for quantitative and qualitative analysis of fatty acids in marine animal samples. J Exp Mar Biol and Ecol, 354, 1–8. https://doi.org/10.1016/j.jembe.2007.08.024

    Article  CAS  Google Scholar 

  36. De Troch, M., Boeckx, P., Cnudde, C., Van Gansbeke, D., Vanreusel, A., Vincx, M., & Caramujo, M. J. (2012). Bioconversion of fatty acids at the basis of marine food webs: insights from a compound-specific stable isotope analysis. Marine Ecology Progress Series, 465, 53–67. https://doi.org/10.3354/meps09920

    Article  CAS  Google Scholar 

  37. Guckert, J. B., Antworth, C. P., Nichols, P. D., & White, D. C. (1985). Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiology Ecology, 31, 147–158. https://doi.org/10.1111/j.1574-6968.1985.tb01143.x

    Article  CAS  Google Scholar 

  38. Sandrini, G., Cunsolo, S., Schuurmans, J. M., Matthijs, H. C. P., & Huisman, J. (2015). Changes in gene expression, cell physiology and toxicity of the harmful cyanobacterium Microcystis aeruginosa at elevated CO2. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2015.00401

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kaneko, T., Nakajima, N., Okamoto, S., Suzuki, I., Tanabe, Y., Tamaoki, M., Nakamura, Y., Kasai, F., Watanabe, A., Kawashima, K., Kishida, Y., Ono, A., Shimizu, Y., Takahashi, C., Minami, C., Fujishiro, T., Kohara, M., Katoh, M., & Nakazaki Watanabe, M. M., N. (2008). Complete genomic structure of the bloom-forming toxic cyanobacterium Microcystis aeruginosa NIES-843. DNA Research, 14(6), 247–256. https://doi.org/10.1093/dnares/dsm026

    Article  CAS  PubMed Central  Google Scholar 

  40. Sevilla, E., Martin-Luna, B., Vela, L., Bes, M. T., Fillat, M. F., & Peleato, M. L. (2008). Iron availability affects mcyD expression and microcystin-LR synthesis in Microcystis aeruginosa PCC7806. Environmental Microbiology, 10(10), 2476–2483. https://doi.org/10.1111/j.1462-2920.2008.01663.x

    Article  CAS  PubMed  Google Scholar 

  41. Scherer, P. I., Raeder, U., Geist, J., & Zwirglmaier, K. (2017). Influence of temperature, mixing, and addition of microcystin-LR on microcystin gene expression in Microcystis aeruginosa. Microbiol open, 6(1), e00393. https://doi.org/10.1002/mbo3.393

    Article  CAS  Google Scholar 

  42. Larionov, A., Krause, A., & Miller, W. (2005). A standard curve based method for relative real time PCR data processing. BMC Bioinform, 6, 62. https://doi.org/10.1186/1471-2105-6-62

    Article  CAS  Google Scholar 

  43. Scheiner, S. M. (2001). MANOVA: multiple response variables and multi species interactions. In S. M. Scheiner & J. Gurevitch (Eds.), Design and analysis of ecological experiments (pp. 99–115). Oxford University Press.

    Chapter  Google Scholar 

  44. Orce, V. L., & Helbling, E. W. (1997). Latitudinal UVR-PAR measurements in Argentina: extent of the “ozone hole.” Glob Planet Ch, 15, 113–121. https://doi.org/10.1016/S0921-8181(97)00007-6

    Article  Google Scholar 

  45. Zinser, E. R., Johnson, Z. I., Coe, A., Karaca, E., Veneziano, D., & Chisholm, S. W. (2007). Influence of light and temperature on Prochlorococcus ecotype distributions in the Atlantic Ocean. Limnol and Oceanogr, 52(5), 2205–2220. https://doi.org/10.4319/lo.2007.52.5.2205

    Article  Google Scholar 

  46. Giannuzzi, L., Krock, B., Crettaz, M. C., Rosso, L., Houghton, C., Sedan, D., Malanga, G., Espinosa, M., Andrinolo, D., & Hernando, M. (2016). Growth, toxin production, active oxygen species and antioxidants responses of Microcystis aeruginosa (Cyanophyceae) exposed to temperature stress. Comp Biochem Physiol Part C, 189, 22–30. https://doi.org/10.1016/j.cbpc.2016.07.001

    Article  CAS  Google Scholar 

  47. Zheng, T., Zhou, M., Yang, L., Wang, Y., Wang, Y., Meng, Y., Liu, J., & Zuo, Z. (2020). Effects of high light and temperature on Microcystis aeruginosa cell growth and β-cyclocitral emission. Ecotoxicol and Environ Saf, 192, 110313. https://doi.org/10.1016/j.ecoenv.2020.110313

    Article  CAS  Google Scholar 

  48. de la Rosa, F., Hernando, M., Cervino, C., & Malanga, G. (2022). Response of antioxidant defences of Microcystis aeruginosa (Cyanobacteria) to increased temperature. Phycologia, 61(3), 321–331. https://doi.org/10.1080/00318884.2022.2046410

    Article  CAS  Google Scholar 

  49. Latifi, A., Ruiz, M., & Zhang, C. C. (2009). Oxidative stress in cyanobacteria. FEMS Microbiology Reviews, 33(2), 258–278. https://doi.org/10.1111/j.1574-6976.2008.00134.x

    Article  CAS  PubMed  Google Scholar 

  50. Sinha, R. P., & Häder, D. P. (2002). UV-induced DNA damage and repair: A review. Photochem and Photobiol Sci., 1, 225–236. https://doi.org/10.1039/b201230h

    Article  CAS  Google Scholar 

  51. Häubner, N., Sylvander, P., Vuori, K., & Snoeijs, P. (2014). Abiotic stress modifies the synthesis of alpha-tocopherol and beta-carotene in phytoplankton species. Journal of Phycology, 50, 753–759. https://doi.org/10.1111/jpy.12198

    Article  CAS  PubMed  Google Scholar 

  52. Garcia-Pichel, F. (1994). A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnol and Oceanogr, 39(7), 1704–1717. https://doi.org/10.4319/lo.1994.39.7.1704

    Article  Google Scholar 

  53. Qin, H., Li, S., & Li, D. (2015). Differential responses of different phenotypes of Microcystis (Cyanophyceae) to UV-B radiation. Phycologia, 54, 118–129. https://doi.org/10.2216/PH14-93.1

    Article  Google Scholar 

  54. Barros, M. P., Pedersen, M., Colepicolo, P., & Snoeijs, P. (2003). Self-shading protects phytoplankton communities against H2O2- induced oxidative damage. Aquatic Microbial Ecology, 30(3), 275–282. https://doi.org/10.3354/ame030275

    Article  Google Scholar 

  55. Hernando, M., Schloss, I., Roy, S., & Ferreyra, G. (2006). Photoacclimation to long-term ultraviolet radiation exposure of natural sub-Antarctic phytoplankton communities: Fixed Surface incubations versus mixed mesocosms. Photochem and Photobiol, 82(4), 923–935. https://doi.org/10.1562/2005-08-29-RA-662

    Article  CAS  Google Scholar 

  56. Giordanino, M. V. F., Strauch, S. M., Villafañe, V. E., & Helbling, E. W. (2011). Influence of temperature and UVR on photosynthesis and morphology of four species of cyanobacteria. Journal of Photochemistry and Photobiology, B: Biology, 103(1), 68–77. https://doi.org/10.1016/j.jphotobiol.2011.01.013

    Article  CAS  PubMed  Google Scholar 

  57. Noyma, N. P., Mesquita, M. C., Roland, F., Marinho, M. M., Huszar, V. L., & Lürling, M. (2021). Increasing temperature counteracts the negative effect of UV radiation on growth and photosynthetic efficiency of Microcystis aeruginosa and Raphidiopsis raciborskii. Photochemistry and Photobiology, 97(4), 753–762. https://doi.org/10.1111/php.13377

    Article  CAS  PubMed  Google Scholar 

  58. Singh, S. P., Häder, D. P., & Sinha, R. P. (2010). Cyanobacteria and ultraviolet radiation (UVR) stress: Mitigation strategies. Ageing Research Reviews, 9(2), 79–90. https://doi.org/10.1016/j.arr.2009.05.004

    Article  CAS  PubMed  Google Scholar 

  59. Rastogi, R. P., Singh, S. P., Häder, D. P., & Sinha, R. P. (2011). Ultraviolet-B-induced DNA damage and photorepair in the cyanobacterium Anabaena variabilis PCC 7937. Environ Exp Botany, 74, 280–288. https://doi.org/10.1016/j.envexpbot.2011.06.010

    Article  CAS  Google Scholar 

  60. Hernando, M., Schloss, I. R., Almandoz, G. O., Malanga, G., Varela, D. E., & De Troch, M. (2018). Combined effects of temperature and salinity on fatty acid content and lipid damage in Antarctic phytoplankton. Journal of Experimental Marine Biology and Ecology, 503, 120–128. https://doi.org/10.1016/j.jembe.2018.03.004

    Article  CAS  Google Scholar 

  61. Caldwell, M. M., Bornman, J. F., Ballaré, C. L., Flint, S. D., & Kulandaivelu, G. (2007). Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochemical & Photobiological Sciences, 6, 252–266. https://doi.org/10.1039/b700019g

    Article  CAS  Google Scholar 

  62. Shirkey, B., Kovarcik, D. P., Wright, D. J., Wilmoth, G., Prickett, T. F., Helm, R. F., Gregory, E. M., & Potts, M. (2000). Active Fe-containing superoxide dismutase and abundant sodF mRNA in Nostoc commune (Cyanobacteria) after years of desiccation. Journal of Bacteriology, 182(1), 189–197. https://doi.org/10.1128/JB.182.1.189-197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu, D., Liu, H., Wang, S., Chen, J., & Xia, Y. (2018). The toxicity of ionic liquid 1-decylpyridinium bromide to the algae Scenedesmus obliquus: Growth inhibition, phototoxicity, and oxidative stress. Science of the Total Environment, 622–623, 1572–1580. https://doi.org/10.1016/j.scitotenv.2017.10.021

    Article  CAS  PubMed  Google Scholar 

  64. Castenholz, R. W., & Garcia-P, F. (2012). Cyanobacterial responses to UV radiation. In B. Whitton (Ed.), Ecology of Cyanobacteria II (pp. 481–499). Springer.

    Chapter  Google Scholar 

  65. Rai, S., & Sitther, V. (2022). Oxidative stress in cyanobacteria: Sources, mitigation, and defense. In P. K. Singh, M. F. Fillat, V. Sitther, & A. Kumar (Eds.), Developments in microbiology, expanding horizon of cyanobacterial biology (pp. 163–178). Academic Press.

    Chapter  Google Scholar 

  66. Takahashi, S., Whitney, S., Itoh, S., Maruyama, T., & Badger, M. (2007). Heat stress causes inhibition of the de novo synthesis of antennae proteins and photobleaching in cultured Symbiodinium. Proc Natl Acad Sci U S A, 105(11), 4203–4208. https://doi.org/10.1073/pnas.0708554105

    Article  Google Scholar 

  67. Renaud, S. M., Luong-Van, T., Lambrinidis, G., & Parry, D. L. (2002). Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 211, 195–214. https://doi.org/10.1016/S0044-8486(01)00875-4

    Article  CAS  Google Scholar 

  68. Wada, H., Gombos, Z., & Murata, N. (1994). Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress. Proc Natl Acad Sci U S A, 91, 4273–4277. https://doi.org/10.1073/pnas.91.10.4273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Thompson, P. A., Guo, M., Harrison, P. J., & Whyte, J. N. C. (1992). Effects of variation in temperature. II. On the fatty acid composition of eight species of marine phytoplankton. Journal of Phycology, 28, 488–497. https://doi.org/10.1111/j.0022-3646.1992.00488.x

    Article  CAS  Google Scholar 

  70. Dodson, V. J., Mouget, J. L., Dahmen, J. L., & Leblond, J. D. (2014). The long and short of it: Temperature-dependent modifications of fatty acid chain length and unsaturation in the galactolipid profiles of the diatoms Haslea ostrearia and Phaeodactylum tricornutum. Hydrobiologia, 727(1), 95–107. https://doi.org/10.1007/s10750-013-1790-4

    Article  CAS  Google Scholar 

  71. Aminaka, R., Taira, Y., Kashino, Y., Koike, H., & Satoh, K. (2006). Acclimation to the growth temperature and thermosensitivity of Photosystem II in a mesophilic cyanobacterium, Synechocystis sp. PCC6803. Plant and Cell Physiology, 47, 1612–1621. https://doi.org/10.1093/pcp/pcl024

    Article  CAS  PubMed  Google Scholar 

  72. Chintalapati, S., Prakash, J. S. S., Gupta, P., Ohtani, S., Suzuki, I., Sakamoto, T., Murata, N., & Shivaji, S. (2006). A novel Δ9 acyl-lipid desaturase, DesC2, from cyanobacteria acts on fatty acids esterified to the sn−2 position of glycerolipids. The Biochemical Journal, 398(2), 207–214. https://doi.org/10.1042/BJ20060039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Poole, L. B., Parsonage, D., Sergeant, S., Miller, L. R., Lee, J., Furdui, C. M., & Chilton, F. H. (2020). Acyl-lipid desaturases and Vipp1 cooperate in cyanobacteria to produce novel omega-3 PUFA-containing glycolipids. Biotechnol For Biofuels, 13(1), 1–15. https://doi.org/10.1042/BJ20060039

    Article  CAS  Google Scholar 

  74. Khozin-Goldberg, I., & Cohen, Z. (2006). The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochem, 67(7), 696–701. https://doi.org/10.1016/j.phytochem.2006.01.010

    Article  CAS  Google Scholar 

  75. Sushchik, N. N., Kalacheva, G. S., Zhila, N. O., Gladyshev, M. I., & Volova, T. G. (2003). A temperature dependence of the intra-and extracellular fatty-acid composition of green algae and cyanobacterium. Rus J Plant Physiol, 50(3), 374–380. https://doi.org/10.1023/A:1023830405898

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to results presented in this publication was carried out with infrastructure funded by EMBRC Belgium—FWO project GOH3817N. The FA analyses were supported by Special Research Fund of Ghent University (BOF-UGent). We acknowledge Dr. Bruno Vlaeminck (UGent) for FA analyses. We especially thanks to both anonymous reviewers and the editor for comments and suggestions. Partial support was received from International Atomic Energy Agency, Project RLA 7026.

Funding

European Marine Biological Resource Centre Belgium, GOH3817N, Marleen De Troch, Universiteit Gent, BOF-UGent, Marleen De Troch, Federal Agency of Atomic Energy of the Russian Federation, RLA 7026, Marcelo Hernando.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florencia de la Rosa.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Rosa, F., Pezzoni, M., De Troch, M. et al. Effects of temperature up-shift and UV-A radiation on fatty acids content and expression of desaturase genes in cyanobacteria Microcystis aeruginosa: stress tolerance and acclimation responses. Photochem Photobiol Sci (2024). https://doi.org/10.1007/s43630-024-00584-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43630-024-00584-9

Keywords

Navigation