Skip to main content
Log in

Light-emitting plants development by inoculating of Vibrio campbellii RMT1 on the rhizospheric zone of Aglaonema cochinchinense

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The concept of utilizing light-emitting plants (LEPs) as an alternative to traditional electricity-based lighting has garnered interest. However, challenges persist due to the need for genetic modification or chemical infusion in current LEPs. To address this, researchers have investigated the interaction between plants and luminous bacteria, specifically Vibrio campbellii, which can efficiently be translocated into Aglaonema cochinchinense tissues through the roots to produce LEPs. This study concentrated on examining light intensity and enhancing luminescence by growing plants and spraying them with various media substances. The results indicated that V. campbellii successfully translocated into the plant tissue via the root system and accumulated a high number of bacteria in the stems, approximately 8.46 × 104 CFU/g, resulting in a light-emitting intensity increase of 12.13-fold at 48 h, and then decreased after 30 h. Interestingly, luminescence stimulation by spraying the growth medium managed to induce the highest light emission, reaching 14.84-fold at 48 h, though it had some negative effects on the plant. Conversely, spraying plants with CaCl2 on the leaves prolonged light emission for a longer duration (42 h after spraying) and had a positive effect on plant health, it maintained ion homeostasis and reduced-MDA content. This study highlights the potential of using V. campbellii and CaCl2 spraying for the future development of practical light-emitting plants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Martins, F., Felgueiras, C., Smitkova, M., & Caetano, N. (2019). Analysis of fossil fuel energy consumption and environmental impacts in European countries. Energies, 12(6), 964. https://doi.org/10.3390/en12060964

    Article  CAS  Google Scholar 

  2. Mohr, S. H., Wang, J., Ellem, G., Ward, J., & Giurco, D. (2015). Projection of world fossil fuels by country. Fuel, 141, 120–135. https://doi.org/10.1016/j.fuel.2014.10.030

    Article  CAS  Google Scholar 

  3. Ardavani, O., Zerefos, S., & Doulos, L. T. (2020). Redesigning the exterior lighting as part of the urban landscape: The role of transgenic bioluminescent plants in mediterranean urban and suburban lighting environments. Journal of Cleaner Production, 242, 118477. https://doi.org/10.1016/j.jclepro.2019.118477

    Article  CAS  Google Scholar 

  4. Ow, D. W., Wood, K. V., DeLuca, M., De Wet, J. R., Helinski, D. R., & Howell, S. H. (1986). Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science, 234(4778), 856–859. https://doi.org/10.1126/science.234.4778.856

    Article  CAS  PubMed  Google Scholar 

  5. Midtvedt, T. (2014). Antibiotic resistance and genetically modified plants. Microbial Ecology in Health and Disease, 25(1), 25918. https://doi.org/10.3402/mehd.v25.25918

    Article  Google Scholar 

  6. Kwak, S. Y., Giraldo, J. P., Wong, M. H., Koman, V. B., Lew, T. T. S., Ell, J., Weidman, M. C., Sinclair, R. M., Landry, M. P., Tisdale, W. A., & Strano, M. S. (2017). A nanobionic light-emitting plant. Nano letters, 17(12), 7951–7961. https://doi.org/10.1021/acs.nanolett.7b04369

    Article  CAS  PubMed  Google Scholar 

  7. Kanjanapokin, C., Thiravetyan, P., Krobthong, S., Aonbangkhen, C., Yingchutrakul, Y., Kittipornkul, P., & Treesubsuntorn, C. (2023). Possibility to apply strontium aluminate to produce light-emitting plants: efficiency and safety. Chemistry & Biodiversity. https://doi.org/10.1002/cbdv.202300552

    Article  Google Scholar 

  8. Brodl, E., Winkler, A., & Macheroux, P. (2018). Molecular mechanisms of bacterial bioluminescence. Computational and structural biotechnology journal, 16, 551–564. https://doi.org/10.1016/j.csbj.2018.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. David, B. V., Chandrasehar, G., & Selvam, P. N. (2018). Pseudomonas fluorescens: A plant-growth-promoting rhizobacterium (PGPR) with potential role in biocontrol of pests of crops. In M. Prasad, S. S. Gill, & N. Tuteja (Eds.), New and future developments in microbial biotechnology and bioengineering (pp. 221–243). Elsevier. https://doi.org/10.1016/B978-0-444-63987-5.00010-4

    Chapter  Google Scholar 

  10. Tanet, L., Tamburini, C., Baumas, C., Garel, M., Simon, G., & Casalot, L. (2019). Bacterial bioluminescence: Light emission in Photobacterium phosphoreum is not under quorum-sensing control. Frontiers in Microbiology, 10, 365. https://doi.org/10.3389/fmicb.2019.00365

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ramesh, C., & Bessho-Uehara, M. (2021). Acquisition of bioluminescent trait by non-luminous organisms from luminous organisms through various origins. Photochemical & Photobiological Sciences, 20, 1547–1562. https://doi.org/10.1007/s43630-021-00124-9

    Article  CAS  Google Scholar 

  12. Das, S., Ganguly, D., Maiti, T. K., Mukherjee, A., Jana, T. K., & De, T. K. (2013). A depth wise diversity of free living N2 fixing and nitrifying bacteria and its seasonal variation with nitrogen containing nutrients in the mangrove sediments of Sundarban, WB, India. Open Journal of Marine Science, 3(2), 112–119. https://doi.org/10.4236/ojms.2013.32012

    Article  Google Scholar 

  13. Thar, H. M., Treesubsuntorn, C., Thiravetyan, P., & Dolphen, R. (2023). Development of light-emitting Episcia lilacina leaf by applying Vibrio campbellii RMT1 and extending the glowing by CaCl2 and yeast extract. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-28657-9

    Article  PubMed  Google Scholar 

  14. Fang, J. Y., & Hsu, Y. R. (2012). Molecular identification and antibiotic control of endophytic bacterial contaminants from micropropagated Aglaonema cultures. Plant Cell. Tissue and Organ Culture (PCTOC), 110, 53–62. https://doi.org/10.1007/s11240-012-0129-6

    Article  CAS  Google Scholar 

  15. Pheomphun, P., Treesubsuntorn, C., & Thiravetyan, P. (2019). Effect of exogenous catechin on alleviating O3 stress: The role of catechin-quinone in lipid peroxidation, salicylic acid, chlorophyll content, and antioxidant enzymes of Zamioculcas zamiifolia. Ecotoxicology and environmental safety, 180, 374–383. https://doi.org/10.1016/j.ecoenv.2019.05.002

    Article  CAS  PubMed  Google Scholar 

  16. Zheng, Y. H., Li, X., Li, Y. G., Miao, B. H., Xu, H., Simmons, M., & Yang, X. H. (2012). Contrasting responses of salinity-stressed salt-tolerant and intolerant winter wheat (Triticum aestivum L.) cultivars to ozone pollution. Plant Physiology and Biochemistry, 52, 169–178. https://doi.org/10.1016/j.plaphy.2012.01.007

    Article  CAS  PubMed  Google Scholar 

  17. Bassin, J. P., Kleerebezem, R., Muyzer, G., Rosado, A. S., Van Loosdrecht, M. C., & Dezotti, M. (2012). Effect of different salt adaptation strategies on the microbial diversity, activity, and settling of nitrifying sludge in sequencing batch reactors. Applied Microbiology and Biotechnology, 93, 1281–1294. https://doi.org/10.1007/s00253-011-3428-7

    Article  CAS  PubMed  Google Scholar 

  18. Guan, N., & Liu, L. (2020). Microbial response to acid stress: Mechanisms and applications. Applied Microbiology and Biotechnology, 104(1), 51–65. https://doi.org/10.1007/s00253-019-10226-1

    Article  CAS  PubMed  Google Scholar 

  19. Tabei, Y., Era, M., Ogawa, A., & Morita, H. (2012). Interactions between bicarbonate, potassium, and magnesium, and sulfur-dependent induction of luminescence in Vibrio fischeri. Journal of Basic Microbiology, 52(3), 350–359. https://doi.org/10.1002/jobm.201100185

    Article  CAS  PubMed  Google Scholar 

  20. Tabei, Y., Ogawa, A., Era, M., Ninomiya, J., & Morita, H. (2013). Influence of cations and anions on the induction of cell density-independent luminescence in Photorhabdus luminescens. Journal of Basic Microbiology, 53(3), 268–276. https://doi.org/10.1002/jobm.201100568

    Article  CAS  PubMed  Google Scholar 

  21. Shibata, S., Yip, E. S., Quirke, K. P., Ondrey, J. M., & Visick, K. L. (2012). Roles of the structural symbiosis polysaccharide (syp) genes in host colonization, biofilm formation, and polysaccharide biosynthesis in Vibrio fischeri. Journal of Bacteriology, 194(24), 6736–6747. https://doi.org/10.1128/jb.00707-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. De Silva, L. A. D. S., & Heo, G. J. (2023). Biofilm formation of pathogenic bacteria isolated from aquatic animals. Archives of Microbiology, 205(1), 36. https://doi.org/10.1007/s00203-022-03332-8

    Article  CAS  Google Scholar 

  23. Penesyan, A., Paulsen, I. T., Kjelleberg, S., & Gillings, M. R. (2021). Three faces of biofilms: a microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. npj Biofilms and Microbiomes, 7(1), 80. https://doi.org/10.1038/s41522-021-00251-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Werthén, M., & Lundgren, T. (2001). Intracellular Ca2+ mobilization and kinase activity during acylated homoserine lactone-dependent quorum sensing in Serratia liquefaciens. Journal of Biological Chemistry, 276(9), 6468–6472. https://doi.org/10.1074/jbc.M009223200

    Article  PubMed  Google Scholar 

  25. Liu, L., Zeng, X., Zheng, J., Zou, Y., Qiu, S., & Dai, Y. (2022). AHL-mediated quorum sensing to regulate bacterial substance and energy metabolism: A review. Microbiological Research. https://doi.org/10.1016/j.micres.2022.127102

    Article  PubMed  Google Scholar 

  26. Simpson, C. A., Petersen, B. D., Haas, N. W., Geyman, L. J., Lee, A. H., Podicheti, R., Pepin, R., Brown, L. C., Rusch, D. B., Manzella, M. P., Papenfort, K., & van Kessel, J. C. (2021). The quorum-sensing systems of Vibrio campbellii DS40M4 and BB120 are genetically and functionally distinct. Environmental Microbiology, 23(9), 5412–5432. https://doi.org/10.1111/1462-2920.15602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bhadrecha, P., Singh, S., & Dwibedi, V. (2023). ‘A plant’s major strength in rhizosphere’: The plant growth promoting rhizobacteria. Archives of Microbiology, 205(5), 165. https://doi.org/10.1007/s00203-023-03502-2

    Article  CAS  PubMed  Google Scholar 

  28. Bulgarelli, D., Schlaeppi, K., Spaepen, S., Van Themaat, E. V. L., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807–838. https://doi.org/10.1146/annurev-arplant-050312-120106

    Article  CAS  PubMed  Google Scholar 

  29. Garagounis, C., Delkis, N., & Papadopoulou, K. K. (2021). Unraveling the roles of plant specialized metabolites: Using synthetic biology to design molecular biosensors. New Phytologist, 231(4), 1338–1352. https://doi.org/10.1111/nph.17470

    Article  PubMed  Google Scholar 

  30. Ismail, H. F., Hashim, Z., Soon, W. T., Ab Rahman, N. S., Zainudin, A. N., & Majid, F. A. A. (2017). Comparative study of herbal plants on the phenolic and flavonoid content, antioxidant activities and toxicity on cells and zebrafish embryo. Journal of Traditional and Complementary Medicine, 7(4), 452–465. https://doi.org/10.1016/j.jtcme.2016.12.006

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sharifi, R., Lee, S. M., & Ryu, C. M. (2018). Microbe-induced plant volatiles. New Phytologist, 220(3), 684–691. https://doi.org/10.1111/nph.14955

    Article  PubMed  Google Scholar 

  32. Plyuta, V., Zaitseva, J., Lobakova, E., Zagoskina, N., Kuznetsov, A., & Khmel, I. (2013). Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa. APMIS, 121(11), 1073–1081. https://doi.org/10.1111/apm.12083

    Article  CAS  PubMed  Google Scholar 

  33. Bettenworth, V., van Vliet, S., Turkowyd, B., Bamberger, A., Wendt, H., McIntosh, M., Steinchen, W., Endesfelder, U., & Becker, A. (2022). Frequency modulation of a bacterial quorum sensing response. Nature Communications, 13(1), 2772. https://doi.org/10.1038/s41467-022-30307-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Losi, A., & Gaertner, W. (2021). A light life together: Photosensing in the plant microbiota. Photochemical & Photobiological Sciences, 20(3), 451–473. https://doi.org/10.1007/s43630-021-00029-7

    Article  CAS  Google Scholar 

  35. Yang, Y., & Guo, Y. (2018). Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytologist, 217(2), 523–539. https://doi.org/10.1111/nph.14920

    Article  CAS  PubMed  Google Scholar 

  36. Tarchoune, I., Degl’Innocenti, E., Kaddour, R., Guidi, L., Lachaâl, M., Navari-Izzo, F., & Ouerghi, Z. (2012). Effects of NaCl or Na2SO4 salinity on plant growth, ion content and photosynthetic activity in Ocimum basilicum L. Acta Physiologiae Plantarum, 34, 607–615. https://doi.org/10.1007/s11738-011-0861-2

    Article  CAS  Google Scholar 

  37. Chomicki, G., Werner, G. D., West, S. A., & Kiers, E. T. (2020). Compartmentalization drives the evolution of symbiotic cooperation. Philosophical Transactions of the Royal Society B, 375(1808), 20190602. https://doi.org/10.1098/rstb.2019.0602

    Article  CAS  Google Scholar 

  38. Ouyang, Y., Chen, S., Zhao, L., Song, Y., Lei, A., He, J., & Wang, J. (2021). Global metabolomics reveals that vibrio natriegens enhances the growth and paramylon synthesis of Euglena gracilis. Frontiers in Bioengineering and Biotechnology, 9, 652021. https://doi.org/10.3389/fbioe.2021.652021

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jin, J., Cui, H., Lv, X., Yang, Y., Wang, Y., & Lu, X. (2017). Exogenous CaCl2 reduces salt stress in sour jujube by reducing Na+ and increasing K+, Ca2+, and Mg2+ in different plant organs. The Journal of Horticultural Science and Biotechnology, 92(1), 98–106. https://doi.org/10.1080/14620316.2016.1228435

    Article  CAS  Google Scholar 

  40. Rodrigues, T., Piccirillo, S., Magi, S., Preziuso, A., dos Santos Ramos, V., Serfilippi, T., Orciani, M., Alvarez, M. M. P., dos Santos Tersariol, I. L., Amoroso, S., & Lariccia, V. (2022). Control of Ca2+ and metabolic homeostasis by the Na+/Ca2+ exchangers (NCXs) in health and disease. Biochemical Pharmacology, 203, 115163. https://doi.org/10.1016/j.bcp.2022.115163

    Article  CAS  PubMed  Google Scholar 

  41. Ji, X., Cheng, J., Gong, D., Zhao, X., Qi, Y., Su, Y., & Ma, W. (2018). The effect of NaCl stress on photosynthetic efficiency and lipid production in freshwater microalga—Scenedesmus obliquus XJ002. Science of the Total Environment, 633, 593–599. https://doi.org/10.1016/j.scitotenv.2018.03.240

    Article  CAS  PubMed  Google Scholar 

  42. Muchate, N. S., Nikalje, G. C., Rajurkar, N. S., Suprasanna, P., & Nikam, T. D. (2016). Plant salt stress: Adaptive responses, tolerance mechanism and bioengineering for salt tolerance. The Botanical Review, 82, 371–406. https://doi.org/10.1007/s12229-016-9173-y

    Article  Google Scholar 

  43. Mateos-Naranjo, E., López-Jurado, J., Redondo-Gómez, S., Pérez-Romero, J. A., Glick, B. R., Rodríguez-Llorente, I. D., Pajuelo, E., Echegoyan, A., & Mesa-Marín, J. (2020). Uncovering PGPB Vibrio spartinae inoculation-triggered physiological mechanisms involved in the tolerance of Halimione portulacoides to NaCl excess. Plant Physiology and Biochemistry, 154, 151–159. https://doi.org/10.1016/j.plaphy.2020.05.034

    Article  CAS  PubMed  Google Scholar 

  44. Dunn, A. K. (2018). Alternative oxidase activity reduces stress in Vibrio fischeri cells exposed to nitric oxide. Journal of Bacteriology, 200(15), 10–1128. https://doi.org/10.1128/jb.00797-17

    Article  CAS  Google Scholar 

  45. Abdel Latef, A. A. H. (2011). Ameliorative effect of calcium chloride on growth, antioxidant enzymes, protein patterns and some metabolic activities of canola (Brassica napus L.) under seawater stress. Journal of Plant Nutrition, 34(9), 1303–1320. https://doi.org/10.1080/01904167.2011.580817

    Article  CAS  Google Scholar 

  46. Nessim, A., & Kasim, W. (2019). Physiological impact of seed priming with CaCl2 or carrot root extract on Lupinus termis plants fully grown under salinity stress. Egyptian Journal of Botany, 59(3), 763–777. https://doi.org/10.21608/ejbo.2019.8026.1289

    Article  Google Scholar 

  47. Kumar, A., Singh, S., Gaurav, A. K., Srivastava, S., & Verma, J. P. (2020). Plant growth-promoting bacteria: Biological tools for the mitigation of salinity stress in plants. Frontiers in Microbiology, 11, 1216. https://doi.org/10.3389/fmicb.2020.01216

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sharma, N., Gupta, N. K., Gupta, S., & Hasegawa, H. (2005). Effect of NaCl salinity on photosynthetic rate, transpiration rate, and oxidative stress tolerance in contrasting wheat genotypes. Photosynthetica, 43, 609–613. https://doi.org/10.1007/s11099-005-0095-x

    Article  Google Scholar 

  49. Lee, M. K., & Van Iersel, M. W. (2008). Sodium chloride effects on growth, morphology, and physiology of chrysanthemum (Chrysanthemum× morifolium). HortScience, 43(6), 1888–1891. https://doi.org/10.21273/HORTSCI.43.6.1888

    Article  Google Scholar 

  50. Huang, S., Waadt, R., Nuhkat, M., Kollist, H., Hedrich, R., & Roelfsema, M. R. G. (2019). Calcium signals in guard cells enhance the efficiency by which abscisic acid triggers stomatal closure. New Phytologist, 224(1), 177–187. https://doi.org/10.1111/nph.15985

    Article  CAS  PubMed  Google Scholar 

  51. Zhu, X., Cao, Q., Sun, L., Yang, X., Yang, W., & Zhang, H. (2018). Stomatal conductance and morphology of arbuscular mycorrhizal wheat plants response to elevated CO2 and NaCl stress. Frontiers in Plant Science, 9, 1363. https://doi.org/10.3389/fpls.2018.01363

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jeanguenin, L., Mir, A. P., & Chaumont, F. (2016) Uptake, loss and control. In Thomas, B., Murphy, D. J., Murray, B. G. (Eds.), Plant physiology and development (vol. 1, pp. 135–140). Elsevier Inc. https://doi.org/10.1016/B978-0-12-394807-6.00087-3

    Book  Google Scholar 

  53. Netondo, G. W., Onyango, J. C., & Beck, E. (2004). Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Science, 44(3), 806–811. https://doi.org/10.2135/cropsci2004.8060

    Article  Google Scholar 

  54. Bazrafshan, A. H., & Ehsanzadeh, P. (2014). Growth, photosynthesis and ion balance of sesame (Sesamum indicum L.) genotypes in response to NaCl concentration in hydroponic solutions. Photosynthetica, 52, 134–147. https://doi.org/10.1007/s11099-014-0015-z

    Article  CAS  Google Scholar 

  55. Koyro, H. W., Hussain, T., Huchzermeyer, B., & Khan, M. A. (2013). Photosynthetic and growth responses of a perennial halophytic grass Panicum turgidum to increasing NaCl concentrations. Environmental and Experimental Botany, 91, 22–29. https://doi.org/10.1016/j.envexpbot.2013.02.007

    Article  CAS  Google Scholar 

  56. Perdomo, J. A., Capó-Bauçà, S., Carmo-Silva, E., & Galmés, J. (2017). Rubisco and rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit. Frontiers in Plant Science, 8, 490. https://doi.org/10.3389/fpls.2017.00490

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cummins, P. L., Kannappan, B., & Gready, J. E. (2018). Directions for optimization of photosynthetic carbon fixation: Rubisco’s efficiency may not be so constrained after all. Frontiers in Plant Science, 9, 183. https://doi.org/10.3389/fpls.2018.00183

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551–560. https://doi.org/10.1093/aob/mcn125

    Article  CAS  PubMed  Google Scholar 

  59. Chen, L., Mao, F., Kirumba, G. C., Jiang, C., Manefield, M., & He, Y. (2015). Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress. Ecotoxicology and Environmental Safety, 122, 126–135. https://doi.org/10.1016/j.ecoenv.2015.07.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the support provided by Research & Innovation for Sustainability Center (RISC), Magnolia Quality Development Corporation Limited (MQDC).

Author information

Authors and Affiliations

Authors

Contributions

CT, RD and PT directed and designed the experiments. CK and NC conducted the experiments. All the authors analyzed the experimental data, discussed and wrote the manuscript.

Corresponding author

Correspondence to Chairat Treesubsuntorn.

Ethics declarations

Conflict of interest

The authors thank the support provided by Research & Innovation for Sustainability Center (RISC), Magnolia Quality Development Corporation Limited (MQDC).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8257 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanjanapokin, C., Thiravetyan, P., Chonjoho, N. et al. Light-emitting plants development by inoculating of Vibrio campbellii RMT1 on the rhizospheric zone of Aglaonema cochinchinense. Photochem Photobiol Sci (2024). https://doi.org/10.1007/s43630-024-00568-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43630-024-00568-9

Keywords

Navigation