Skip to main content
Log in

A novel eco-friendly polymeric photosensitizer based on chitosan and flavin mononucleotide

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Flavin mononucleotide (FMN) is a dye belonging to the flavin family. These dyes produce photosensitized degradation of organic compounds via reaction with the excited states of the dye or with reactive oxygen species photogenerated from the triplet of the dye. This article presents a new polymeric dye (FMN–CS) composed of the photosensitizer FMN covalently bonded to chitosan polysaccharide (CS). FMN–CS obtained has a molecular weight of 230 × 103 g mol−1 and a deacetylation degree of 74.8%. The polymeric dye is an environmentally friendly polymer with spectroscopic and physicochemical properties similar to those of FMN and CS, respectively. Moreover, under sunlight, it is capable of generating 1O2 with a quantum yield of 0.31. FMN–CS, like CS, is insoluble in basic media. This allows easy recovery of the polymeric dye once the photosensitized process has been carried out and makes FMN–CS a suitable photosensitizer for the degradation of pollutants in contaminated waters. To evaluate whether FMN–CS may be used for pollutant degradation, the photosensitized degradation of two trihydroxybenzenes by FMN–CS was studied.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Marin, M. L., Santos-Juanes, L., Arques, A., Amat, A. M., & Miranda, M. A. (2012). Organic photocatalysts for the oxidation of pollutants and model compounds. Chemical Reviews, 112, 1710–1750. https://doi.org/10.1021/cr2000543

    Article  CAS  PubMed  Google Scholar 

  2. Cabezuelo, O., Martinez-Haya, R., Montes, N., Bosca, F., & Marin, M. L. (2021). Heterogeneous riboflavin-based photocatalyst for pollutant oxidation through electron transfer processes. Applied Catalysis B: Environmental, 298, 120497. https://doi.org/10.1016/j.apcatb.2021.120497

    Article  CAS  Google Scholar 

  3. Barbieri, Y., Massad, W. A., Díaz, D. J., Sanz, J., Amat-Guerri, F., & Garcia, N. A. (2008). Photodegradation of bisphenol A and related compounds under natural-like conditions in the presence of riboflavin: kinetics, mechanism and photoproducts. Chemosphere, 73, 564–571. https://doi.org/10.1016/j.chemosphere.2008.06.013

    Article  CAS  PubMed  Google Scholar 

  4. Ferrari, G. V., Andrada, M. E., Natera, J., Muñoz, V. A., Paulina Montãna, M., Gambetta, C., Boiero, M. L., Montenegro, M. A., Massad, W. A., & García, N. A. (2014). The employment of a removable chitosan-derivatized polymeric sensitizer in the photooxidation of polyhydroxylated water-pollutants. Photochemistry and Photobiology, 90, 1251–1256. https://doi.org/10.1111/php.12350

    Article  CAS  PubMed  Google Scholar 

  5. Tobin, J. M., McCabe, T. J. D., Prentice, A. W., Holzer, S., Lloyd, G. O., Paterson, M. J., Arrighi, V., Cormack, P. A. G., & Vilela, F. (2017). Polymer-supported photosensitizers for oxidative organic transformations in flow and under visible light irradiation. ACS Catalysis, 7, 4602–4612. https://doi.org/10.1021/acscatal.7b00888

    Article  CAS  Google Scholar 

  6. Blacha-Grzechnik, A., Drewniak, A., Walczak, K. Z., Szindler, M., & Ledwon, P. (2020). Efficient generation of singlet oxygen by perylene diimide photosensitizers covalently bound to conjugate polymers. Journal of Photochemistry and Photobiology A: Chemistry, 388, 112161. https://doi.org/10.1016/j.jphotochem.2019.112161

    Article  CAS  Google Scholar 

  7. Wondraczek, H., Kotiaho, A., Fardim, P., & Heinze, T. (2011). Photoactive polysaccharides. Carbohydrate Polymers, 83, 1048–1061. https://doi.org/10.1016/j.carbpol.2010.10.014

    Article  CAS  Google Scholar 

  8. Escalada, J. P., Pajares, A., Bregliani, M., Biasutti, A., Criado, S., Molina, P., Massad, W., & García, N. A. (2014). Kinetic aspects of the photodegradation of phenolic and lactonic biocides under natural and artificial conditions. Advanced Oxidation Technologies - Sustainable Solutions for Environmental Treatments, 9, 59–80.

    CAS  Google Scholar 

  9. Natera, J., Gatica, E., Challier, C., Possetto, D., Massad, W., Miskoski, S., Pajares, A., & García, N. A. (2015). On the photooxidation of the multifunctional drug niclosamide. A kinetic study in the presence of vitamin B2 and visible light. Redox Report, 20, 259–266. https://doi.org/10.1179/1351000215Y.0000000010

    Article  CAS  PubMed  Google Scholar 

  10. Krishna, C. M., Uppuluri, S., Riesz, P., Zigler Jr, J. S., & Balasubramanian, D. (1991). A study of the photodynamic efficiencies of some eye lens constituents. Photochemistry and Photobiology, 54, 51–58. https://doi.org/10.1111/j.1751-1097.1991.tb01984.x

    Article  CAS  PubMed  Google Scholar 

  11. Liang, J.-Y., Yuann, J.-M.P., Cheng, C.-W., Jian, H.-L., Lin, C.-C., & Chen, L.-Y. (2013). Blue light induced free radicals from riboflavin on E. coli DNA damage. Journal of Photochemistry and Photobiology B: Biology, 119, 60–64. https://doi.org/10.1016/j.jphotobiol.2012.12.007

    Article  CAS  PubMed  Google Scholar 

  12. Waiman, C. V., Natera, J., Massad, W. A., & Zanini, G. P. (2020). Novel hybrid materials based on alginate-boehmite-riboflavin for photogeneration of reactive oxygen species in aqueous media. Potential environmental implications. Dyes and Pigments, 177, 108281. https://doi.org/10.1016/j.dyepig.2020.108281

    Article  CAS  Google Scholar 

  13. Ray, C., Caillau, M., Jonin, C., Benichou, E., Moulin, C., Salmon, E., Maldonado, M. E., Gomes, A. S. L., Monnier, V., Laurenceau, E., Leclercq, J.-L., Chevolot, Y., Delair, T., & Brevet, P.-F. (2018). Quadratic nonlinear optics to assess the morphology of riboflavin doped chitosan for eco-friendly lithography. Optical Materials, 80, 30–36. https://doi.org/10.1016/j.optmat.2018.04.007

    Article  CAS  Google Scholar 

  14. Ronzani, F., Saint-Cricq, P., Arzoumanian, E., Pigot, T., Blanc, S., Oelgemöller, M., Oliveros, E., Richard, C., & Lacombe, S. (2014). Immobilized organic photosensitizers with versatile reactivity for various visible-light applications. Photochemistry and Photobiology, 90, 358–368. https://doi.org/10.1111/php.12166

    Article  CAS  PubMed  Google Scholar 

  15. Renault, F., Sancey, B., Badot, P.-M., & Crini, G. (2009). Chitosan for coagulation/flocculation processes—An eco-friendly approach. European Polymer Journal, 45, 1337–1348. https://doi.org/10.1016/j.eurpolymj.2008.12.027

    Article  CAS  Google Scholar 

  16. Bonnett, R., Krysteva, M. A., Lalov, I. G., & Artarsky, S. V. (2006). Water disinfection using photosensitizers immobilized on chitosan. Water Research, 40, 1269–1275.

    Article  CAS  PubMed  Google Scholar 

  17. Gmurek, M., Foszpańczyk, M., Olak-Kucharczyk, M., Gryglik, D., & Ledakowicz, S. (2017). Photosensitive chitosan for visible-light water pollutant degradation. Chemical Engineering Journal, 318, 240–246. https://doi.org/10.1016/j.cej.2016.06.125

    Article  CAS  Google Scholar 

  18. Dibona-Villanueva, L., & Fuentealba, D. (2021). Novel chitosan-riboflavin conjugate with visible light-enhanced antifungal properties against Penicillium digitatum. Journal of Agriculture and Food Chemistry, 69, 945–954. https://doi.org/10.1021/acs.jafc.0c08154

    Article  CAS  Google Scholar 

  19. Garcia, N. A. (1992). Environmental significance of singlet molecular oxygen-mediated degradation of phenolic aquatic pollutants. Journal of Photochemistry and Photobiology B, 14, 381–383.

    Article  Google Scholar 

  20. Pardeshi, S. K., & Patil, A. B. (2009). Solar photocatalytic degradation of resorcinol a model endocrine disrupter in water using zinc oxide. Journal of Hazardous Materials, 163, 403–409. https://doi.org/10.1016/j.jhazmat.2008.06.111

    Article  CAS  PubMed  Google Scholar 

  21. Hanafy, A. I., Hassan, A. M., El-Rahman, N. M. A., Al-Sayed, M. M., Hanafy, A. I., Hassan, A. M., El-Rahman, N. M. A., & Al-Sayed, M. M. (2012). Oxidation of polyphenol trihydroxybenzene using environment friendly catalyst Copper(II) complex of 4-methoxyphenyl benzopyran oxidation of polyphenol trihydroxybenzene using environment friendly catalyst Copper(II) complex of 4-methoxyphenyl. Journal of American Science, 8, 22–27. https://doi.org/10.7537/marsjas081012.05

  22. Choi, S. H., Collins, J. N. R., Smith, S. A., Davis-Harrison, R. L., Rienstra, C. M., & Morrissey, J. H. (2010). Phosphoramidate end labeling of inorganic polyphosphates: Facile manipulation of polyphosphate for investigating and modulating its biological activities. Biochemistry, 49, 9935–9941. https://doi.org/10.1021/bi1014437

    Article  CAS  PubMed  Google Scholar 

  23. Salehi, E., & Farahani, A. (2017). Macroporous chitosan/polyvinyl alcohol composite adsorbents based on activated carbon substrate. Journal of Porous Materials, 24, 1197–1207. https://doi.org/10.1007/s10934-016-0359-9

    Article  CAS  Google Scholar 

  24. Knaul, J. Z., Bui, V. T., Creber, K. A. M., & Kasaai, M. R. (1998). Characterization of deacetylated chitosan and chitosan molecular weight review. Canadian Journal of Chemistry, 76, 1699–1706. https://doi.org/10.1139/cjc-76-11-1699

    Article  Google Scholar 

  25. Roy, B., Depaix, A., Périgaud, C., & Peyrottes, S. (2016). Recent trends in nucleotide synthesis. Chemical Reviews, 116, 7854–7897. https://doi.org/10.1021/acs.chemrev.6b00174

    Article  CAS  PubMed  Google Scholar 

  26. James, T. L. (1985). Phosphorus-31 NMR as a probe for phosphoprotein. Critical Reviews in Biochemistry, 18, 1–30. https://doi.org/10.3109/10409238509082538

    Article  CAS  PubMed  Google Scholar 

  27. Domszy, J. G., & Roberts, G. A. F. (1985). Evaluation of infrared spectroscopic techniques for analysing chitosan. Makromolekulare Chemie, 186, 1671–1677. https://doi.org/10.1002/macp.1985.021860815

    Article  CAS  Google Scholar 

  28. Morales, G., Pajares, A., Natera, J., Escalada, J. P., Massad, W., & García, N. A. (2017). The riboflavin-photosensitized degradation of the UV-absorbing azo dye-metabolites benzidine and o-tolidine. Kinetic and mechanistic aspects. Journal of Photochemistry and Photobiology A: Chemistry, 344, 49–55. https://doi.org/10.1016/j.jphotochem.2017.04.035

    Article  CAS  Google Scholar 

  29. Gambetta, C., Natera, J., Massad, W. A., & García, N. A. (2013). Methyl anthranilate as generator and quencher of reactive oxygen species: A photochemical study. Journal of Photochemistry and Photobiology A: Chemistry, 269, 27–33. https://doi.org/10.1016/j.jphotochem.2013.06.013

    Article  CAS  Google Scholar 

  30. Miskoski, S., & García, N. A. (1991). Dark and photoinduced interactions between riboflavin and indole auxins. Collection of Czechoslovak Chemical Communications, 56, 1838–1849. https://doi.org/10.1135/cccc19911838

    Article  CAS  Google Scholar 

  31. Massad, W. A., Barbieri, Y., Romero, M., & Garcia, N. A. (2008). Vitamin B2-sensitized photo-oxidation of dopamine. Photochemistry and Photobiology, 84, 1201–1208.

    Article  CAS  PubMed  Google Scholar 

  32. Hermanson, G. T. (2008). Chapter 1—Functional targets. In G. T. Hermanson (Ed.), Bioconjugate techniques (2nd ed., pp. 1–168). Academic Press. https://doi.org/10.1016/B978-0-12-370501-3.00001-1

    Chapter  Google Scholar 

  33. Thuillier, G., Floyd, L., Woods, T. N., Cebula, R., Hilsenrath, E., Hersé, M., & Labs, D. (2004). Solar irradiance reference spectra. Solar variability and its effects on climate (pp. 171–194). American Geophysical Union (AGU). https://doi.org/10.1029/141GM13

    Chapter  Google Scholar 

  34. Losi, A., & Gärtner, W. (2011). Old chromophores, new photoactivation paradigms, trendy applications: flavins in blue light-sensing photoreceptors. Photochemistry and Photobiology, 87, 491–510. https://doi.org/10.1111/j.1751-1097.2011.00913.x

    Article  CAS  PubMed  Google Scholar 

  35. Nyquist, R. A. (1963). Correlations between infrared spectra and structure: phosphoramides and related compounds. Spectrochimica Acta, 19, 713–729. https://doi.org/10.1016/0371-1951(63)80137-X

    Article  CAS  Google Scholar 

  36. Larkin, P. J. (2018). General outline for IR and Raman spectral interpretation. Infrared and Raman spectroscopy (pp. 135–151). Elsevier. https://doi.org/10.1016/B978-0-12-804162-8.00007-0

    Chapter  Google Scholar 

  37. Iuliano, J. N., French, J. B., & Tonge, P. J. (2019). Vibrational spectroscopy of flavoproteins. Methods in enzymology (Vol. 620, pp. 189–214). Elsevier. https://doi.org/10.1016/bs.mie.2019.03.011

    Chapter  Google Scholar 

  38. Spexard, M., Immeln, D., Thöing, C., & Kottke, T. (2011). Infrared spectrum and absorption coefficient of the cofactor flavin in water. Vibrational Spectroscopy, 57, 282–287. https://doi.org/10.1016/j.vibspec.2011.09.002

    Article  CAS  Google Scholar 

  39. Pawlak, A., & Mucha, M. (2003). Thermogravimetric and FTIR studies of chitosan blends. Thermochimica Acta, 396, 153–166. https://doi.org/10.1016/S0040-6031(02)00523-3

    Article  CAS  Google Scholar 

  40. Edmondson, D. E., & James, T. L. (1979). Covalently bound non-coenzyme phosphorus residues in flavoproteins: 31P nuclear magnetic resonance studies of Azotobacter flavodoxin. Proceedings of the National Academy of Sciences, 76, 3786–3789. https://doi.org/10.1073/pnas.76.8.3786

    Article  CAS  Google Scholar 

  41. Corazzari, I., Nisticò, R., Turci, F., Faga, M. G., Franzoso, F., Tabasso, S., & Magnacca, G. (2015). Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity. Polymer Degradation and Stability, 112, 1–9. https://doi.org/10.1016/j.polymdegradstab.2014.12.006

    Article  CAS  Google Scholar 

  42. Kim, S., Jang, M., Park, M., Park, N.-H., & Ju, S.-Y. (2017). A self-assembled flavin protective coating enhances the oxidative thermal stability of multi-walled carbon nanotubes. Carbon, 117, 220–227. https://doi.org/10.1016/j.carbon.2017.02.098

    Article  CAS  Google Scholar 

  43. Heelis, P. F. (1982). The photophysical and photochemical properties of flavins (isoalloxazines). Chemical Society Reviews, 11, 15–39. https://doi.org/10.1039/CS9821100015

    Article  CAS  Google Scholar 

  44. Grajek, H. (2011). Review—Flavins as photoreceptors of blue light and their spectroscopic properties. Current Topics in Biophysics, 34, 53–65. https://doi.org/10.2478/v10214-011-0008-z

    Article  CAS  Google Scholar 

  45. Drössler, P., Holzer, W., Penzkofer, A., & Hegemann, P. (2002). pH dependence of the absorption and emission behaviour of riboflavin in aqueous solution. Chemical Physics, 282, 429–439. https://doi.org/10.1016/S0301-0104(02)00731-0

    Article  Google Scholar 

  46. Görner, H. (2007). Oxygen uptake after electron transfer from amines, amino acids and ascorbic acid to triplet flavins in air-saturated aqueous solution. Journal of Photochemistry and Photobiology B: Biology, 87, 73–80. https://doi.org/10.1016/j.jphotobiol.2007.02.003

    Article  CAS  PubMed  Google Scholar 

  47. Barbieri, Y. (2008). Photodegradation of bisphenol A and related compounds under natural-like conditions in the presence of riboflavin: kinetics, mechanism and photoproducts. Chemosphere, 73, 564–571.

    Article  CAS  PubMed  Google Scholar 

  48. Haggi, E., Bertolotti, S., Miskoski, S., Amat-Guerri, F., & García, N. A. (2002). Environmental photodegradation of pyrimidine fungicides—Kinetics of the visible-light-promoted interactions between riboflavin and 2-amino-4-hydroxy-6-methylpyrimidine. Canadian Journal of Chemistry, 80, 62–67. https://doi.org/10.1139/v01-192

    Article  CAS  Google Scholar 

  49. Gambetta, C., Massad, W. A., Nesci, A. V., & García, N. A. (2015). Vitamin B2-sensitized degradation of the multifunctional drug Evernyl, in the presence of visible light—microbiological implications. Pure and Applied Chemistry, 87, 997–1010. https://doi.org/10.1515/pac-2015-0407

    Article  CAS  Google Scholar 

  50. Chacon, J. N., McLearie, J., & Sinclair, R. S. (1988). Singlet oxygen yields and radical contributions in the dye-sensitised photo-oxidation in methanol of esters of polyunsaturated fatty acids (oleic, linoleic, linolenic and arachidonic). Photochemistry and Photobiology, 47, 647–656. https://doi.org/10.1111/j.1751-1097.1988.tb02760.x

    Article  CAS  PubMed  Google Scholar 

  51. Holzer, W., Shirdel, J., Zirak, P., Penzkofer, A., Hegemann, P., Deutzmann, R., & Hochmuth, E. (2005). Photo-induced degradation of some flavins in aqueous solution. Chemical Physics, 308, 69–78.

    Article  CAS  Google Scholar 

  52. Vanden Braber, N. L., Paredes, A. J., Rossi, Y. E., Porporatto, C., Allemandi, D. A., Borsarelli, C. D., Correa, S. G., & Montenegro, M. A. (2018). Controlled release and antioxidant activity of chitosan or its glucosamine water-soluble derivative microcapsules loaded with quercetin. International Journal of Biological Macromolecules, 112, 399–404. https://doi.org/10.1016/j.ijbiomac.2018.01.085

    Article  CAS  PubMed  Google Scholar 

  53. Yen, M.-T., Yang, J.-H., & Mau, J.-L. (2008). Antioxidant properties of chitosan from crab shells. Carbohydrate Polymers, 74, 840–844. https://doi.org/10.1016/j.carbpol.2008.05.003

    Article  CAS  Google Scholar 

  54. Gutiérrez, M. I., Soltermann, A. T., Amat-Guerri, F., & Garcı́a, N. A. (2000). Kinetics of the dye-sensitized photooxidation of trihydroxybenzenes. Journal of Photochemistry and Photobiology A: Chemistry, 136, 67–71. https://doi.org/10.1016/S1010-6030(00)00309-9

    Article  Google Scholar 

  55. Zhang, R., Wu, C., Tong, L., Tang, B., & Xu, Q.-H. (2009). Multifunctional core−shell nanoparticles as highly efficient imaging and photosensitizing agents. Langmuir, 25, 10153–10158. https://doi.org/10.1021/la902235d

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Secretaría de Ciencia y Técnica of Universidad Nacional de Río Cuarto (SECyT-UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), all from Argentina, for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter A. Massad.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 708 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sacchetto, J., Gutierrez, E., Reta, G.F. et al. A novel eco-friendly polymeric photosensitizer based on chitosan and flavin mononucleotide. Photochem Photobiol Sci 22, 2827–2837 (2023). https://doi.org/10.1007/s43630-023-00489-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00489-z

Keywords

Navigation