Skip to main content
Log in

Light regulation in critical human pathogens of clinical relevance such as Acinetobacter baumannii, Staphylococcus aureus and Pseudomonas aeruginosa

  • Perspectives
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

It is now clearly recognized that light modulates the physiology of many bacterial chemotrophs, either directly or indirectly. An interesting case are bacterial pathogens of clinical relevance. This work summarizes, discusses, and provides novel complementary information to what is currently known about light sensing and responses in critical human pathogens such as Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus aureus. These pathogens are associated with severe hospital and community infections difficult to treat due to resistance to multiple drugs. Moreover, light responses in Brucella abortus, an important animal and human pathogen, are also compiled. Evidence recovered so far indicates that light modulates aspects related to pathogenesis, persistence, and antibiotic susceptibility in these pathogens; such as motility, biofilm formation, iron uptake, tolerance to antibiotics, hemolysis and virulence. The pathogens elicit differential responses to light depending likely on their pathophysiology, ability to cause disease and characteristics of the host. The response to light is not restricted to discrete physiological traits but is global. In higher organisms, light provides spatial and temporal information. Then, it is crucial to understand what information light is providing in these bacterial pathogens. Our current hypothesis postulates that light serves as a signal that allows these pathogens to synchronize their behavior to the circadian rhythm of the host, to optimize infection. Advances on the molecular mechanism of light signal transduction and physiological responses to light, as well as in the relation between light and bacterial infection, would not only enlarge our understanding of bacterial pathogenesis but also could potentially provide alternative treatment options for infectious illnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. Tuttobene, M. R., Perez, J. F., Pavesi, E. S., Perez Mora, B., Biancotti, D., Cribb, P., et al. (2021). Light modulates important pathogenic determinants and virulence in ESKAPE pathogens Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus. Journal of Bacteriology., 203, 5. https://doi.org/10.1128/JB.00566-20

    Article  Google Scholar 

  2. Mussi, M. A., Gaddy, J. A., Cabruja, M., Arivett, B. A., Viale, A. M., Rasia, R., et al. (2010). The opportunistic human pathogen Acinetobacter baumannii senses and responds to light. Journal of Bacteriology., 192(24), 6336–6345. https://doi.org/10.1128/JB.00917-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mukherjee, S., Jemielita, M., Stergioula, V., Tikhonov, M., & Bassler, B. L. (2019). Photosensing and quorum sensing are integrated to control Pseudomonas aeruginosa collective behaviors. PLoS Biology., 17(12), e3000579. https://doi.org/10.1371/journal.pbio.3000579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. van der Horst, M. A., Key, J., & Hellingwerf, K. J. (2007). Photosensing in chemotrophic, non-phototrophic bacteria: Let there be light sensing too. Trends in Microbiology., 15(12), 554–562. https://doi.org/10.1016/j.tim.2007.09.009

    Article  CAS  PubMed  Google Scholar 

  5. Swartz, T. E., Tseng, T. S., Frederickson, M. A., Paris, G., Comerci, D. J., Rajashekara, G., et al. (2007). Blue-light-activated histidine kinases: Two-component sensors in bacteria. Science, 317(5841), 1090–1093. https://doi.org/10.1126/science.1144306

    Article  CAS  PubMed  Google Scholar 

  6. Kahl, L. J., Eckartt, K. N., Morales, D. K., Price-Whelan, A., & Dietrich, L. E. P. (2022). Light/dark and temperature cycling modulate metabolic electron flow in Pseudomonas aeruginosa biofilms. MBio, 13(4), e0140722. https://doi.org/10.1128/mbio.01407-22

    Article  CAS  PubMed  Google Scholar 

  7. Perez Mora, B., Giordano, R., Permingeat, V., Calderone, M., Arana, N., Muller, G., et al. (2023). BfmRS encodes a regulatory system involved in light signal transduction modulating motility and desiccation tolerance in the human pathogen Acinetobacter baumannii. Scientific Reports., 13(1), 175. https://doi.org/10.1038/s41598-022-26314-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tuttobene, M. R., Cribb, P., & Mussi, M. A. (2018). BlsA integrates light and temperature signals into iron metabolism through Fur in the human pathogen Acinetobacter baumannii. Scientific Reports., 8(1), 7728. https://doi.org/10.1038/s41598-018-26127-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Golic, A. E., Valle, L., Jaime, P. C., Alvarez, C. E., Parodi, C., Borsarelli, C. D., et al. (2019). BlsA is a low to moderate temperature blue light photoreceptor in the human pathogen Acinetobacter baumannii. Frontiers in microbiology., 10, 1925. https://doi.org/10.3389/fmicb.2019.01925

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tuttobene, M. R., Muller, G. L., Blasco, L., Arana, N., Hourcade, M., Diacovich, L., et al. (2021). Blue light directly modulates the quorum network in the human pathogen Acinetobacter baumannii. Scientific reports., 11(1), 13375. https://doi.org/10.1038/s41598-021-92845-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abatedaga, I., Perez Mora, B., Tuttobene, M., Muller, G., Biancotti, D., Borsarelli, C. D., et al. (2022). Characterization of BLUF-photoreceptors present in Acinetobacter nosocomialis. PLoS ONE, 17(4), e0254291. https://doi.org/10.1371/journal.pone.0254291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abatedaga, I., Valle, L., Golic, A. E., Muller, G. L., Cabruja, M., Moran Vieyra, F. E., et al. (2017). Integration of temperature and blue-light sensing in Acinetobacter baumannii through the BlsA sensor. Photochemistry and Photobiology., 93(3), 805–814. https://doi.org/10.1111/php.12760

    Article  CAS  PubMed  Google Scholar 

  13. Muller, G. L., Tuttobene, M., Altilio, M., Martinez Amezaga, M., Nguyen, M., Cribb, P., et al. (2017). Light modulates metabolic pathways and other novel physiological traits in the human pathogen Acinetobacter baumannii. Journal of Bacteriology., 199, 10. https://doi.org/10.1128/JB.00011-17

    Article  Google Scholar 

  14. Ramirez, M. S., Muller, G. L., Perez, J. F., Golic, A. E., & Mussi, M. A. (2015). More than just light: clinical relevance of light perception in the nosocomial pathogen Acinetobacter baumannii and other members of the genus acinetobacter. Photochemistry and Photobiology., 91(6), 1291–1301. https://doi.org/10.1111/php.12523

    Article  CAS  PubMed  Google Scholar 

  15. Tuttobene, M. R., Fernandez-Garcia, L., Blasco, L., Cribb, P., Ambroa, A., Muller, G. L., et al. (2019). Quorum and light signals modulate acetoin/butanediol catabolism in Acinetobacter spp. Frontiers in Microbiology., 10, 1376. https://doi.org/10.3389/fmicb.2019.01376

    Article  PubMed  PubMed Central  Google Scholar 

  16. Golic, A., Vaneechoutte, M., Nemec, A., Viale, A. M., Actis, L. A., & Mussi, M. A. (2013). Staring at the cold sun: blue light regulation is distributed within the genus Acinetobacter. PLoS ONE, 8(1), e55059. https://doi.org/10.1371/journal.pone.0055059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pezza, A., Tuttobene, M., Abatedaga, I., Valle, L., Borsarelli, C. D., & Mussi, M. A. (2019). Through the eyes of a pathogen: Light perception and signal transduction in Acinetobacter baumannii. Photochemical & Photobiological Sciences, 18(10), 2363–2373. https://doi.org/10.1039/c9pp00261h

    Article  CAS  Google Scholar 

  18. Ramirez, M. S., Traglia, G. M., Perez, J. F., Muller, G. L., Martinez, M. F., Golic, A. E., et al. (2015). White and blue light induce reduction in susceptibility to minocycline and tigecycline in Acinetobacter spp. and other bacteria of clinical importance. Journal of Medical Microbiology., 64(Pt 5), 525–537. https://doi.org/10.1099/jmm.0.000048

    Article  CAS  PubMed  Google Scholar 

  19. Yu, Z., Tang, J., Khare, T., & Kumar, V. (2020). The alarming antimicrobial resistance in ESKAPEE pathogens: Can essential oils come to the rescue? Fitoterapia, 140, 104433. https://doi.org/10.1016/j.fitote.2019.104433

    Article  CAS  PubMed  Google Scholar 

  20. De Oliveira, D. M. P., Forde, B. M., Kidd, T. J., Harris, P. N. A., Schembri, M. A., Beatson, S. A., et al. (2020). Antimicrobial resistance in ESKAPE pathogens. Clinical Microbiology Reviews., 33, 3. https://doi.org/10.1128/CMR.00181-19

    Article  Google Scholar 

  21. Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., et al. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases., 18(3), 318–327. https://doi.org/10.1016/S1473-3099(17)30753-3

    Article  PubMed  Google Scholar 

  22. Rubio, T., Gagne, S., Debruyne, C., Dias, C., Cluzel, C., Mongellaz, D., et al. (2022). Incidence of an intracellular multiplication niche among Acinetobacter baumannii clinical isolates. mSystems., 7(1), e0048821. https://doi.org/10.1128/msystems.00488-21

    Article  PubMed  Google Scholar 

  23. Hazen, J. E., Di Venanzio, G., Hultgren, S. J., & Feldman, M. F. (2023). Catheterization of mice triggers resurgent urinary tract infection seeded by a bladder reservoir of Acinetobacter baumannii. Science Translational Medicine., 15(678), 8134. https://doi.org/10.1126/scitranslmed.abn8134

    Article  CAS  Google Scholar 

  24. Mancuso, G., Midiri, A., Gerace, E., & Biondo, C. (2021). Bacterial antibiotic resistance: The most critical pathogens. Pathogens., 10, 10. https://doi.org/10.3390/pathogens10101310

    Article  CAS  Google Scholar 

  25. Mesquita, C. S., Ribeiro, A., Gomes, A. C., & Santos, P. M. (2021). Absence of light exposure increases pathogenicity of Pseudomonas aeruginosa pneumonia-associated clinical isolates. Biology, 10, 9. https://doi.org/10.3390/biology10090837

    Article  CAS  Google Scholar 

  26. Oliveira, D., Borges, A., & Simoes, M. (2018). Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins., 10, 6. https://doi.org/10.3390/toxins10060252

    Article  CAS  Google Scholar 

  27. Baig, S., Rhod Larsen, A., Martins Simoes, P., Laurent, F., Johannesen, T. B., Lilje, B., et al. (2020). Evolution and population dynamics of clonal complex 152 community-associated methicillin-resistant Staphylococcus aureus. mSphere., 5, 4. https://doi.org/10.1128/mSphere.00226-20

    Article  Google Scholar 

  28. Chitrakar, I., Iuliano, J. N., He, Y., Woroniecka, H. A., Tolentino Collado, J., Wint, J. M., et al. (2020). Structural basis for the regulation of biofilm formation and iron uptake in A. baumannii by the blue-light-using photoreceptor BlsA. ACS Infectious Diseases, 6(10), 2592–2603. https://doi.org/10.1021/acsinfecdis.0c00156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Farrow, J. M., 3rd., Wells, G., & Pesci, E. C. (2018). Desiccation tolerance in Acinetobacter baumannii is mediated by the two-component response regulator BfmR. PLoS ONE, 13(10), e0205638. https://doi.org/10.1371/journal.pone.0205638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Squire, M. S., Townsend, H. A., & Actis, L. A. (2022). The influence of blue light and the BlsA photoreceptor on the oxidative stress resistance mechanisms of Acinetobacter baumannii. Frontiers in Cellular and Infection Microbiology., 12, 856953. https://doi.org/10.3389/fcimb.2022.856953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wood, C. R., Ohneck, E. J., Edelmann, R. E., & Actis, L. A. (2018). A light-regulated type I pilus contributes to Acinetobacter baumannii biofilm, motility, and virulence functions. Infection and Immunity., 86, 9. https://doi.org/10.1128/IAI.00442-18

    Article  Google Scholar 

  32. Wood, C. R., Squire, M. S., Finley, N. L., Page, R. C., & Actis, L. A. (2019). Structural and functional analysis of the Acinetobacter baumannii BlsA photoreceptor and regulatory protein. PLoS ONE, 14(8), e0220918. https://doi.org/10.1371/journal.pone.0220918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, J., Yun, S., & Park, W. (2023). Blue light sensing BlsA-mediated modulation of meropenem resistance and biofilm formation in Acinetobacter baumannii. mSystems. https://doi.org/10.1128/msystems.00897-22

    Article  PubMed  PubMed Central  Google Scholar 

  34. Juarez-Rodriguez, M. D., Torres-Escobar, A., & Demuth, D. R. (2013). ygiW and qseBC are co-expressed in Aggregatibacter actinomycetemcomitans and regulate biofilm growth. Microbiology (Reading)., 159(Pt 6), 989–1001. https://doi.org/10.1099/mic.0.066183-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Squire, M. S., Townsend, H. A., Islam, A., & Actis, L. A. (2022). Light regulates Acinetobacter baumannii chromosomal and pAB3 plasmid genes at 37 degrees C. Journal of bacteriology., 204(6), e0003222. https://doi.org/10.1128/jb.00032-22

    Article  CAS  PubMed  Google Scholar 

  36. Wood, C. R., Mack, L. E., & Actis, L. A. (2018). An update on the Acinetobacter baumannii regulatory circuitry. Trends in microbiology., 26(7), 560–562. https://doi.org/10.1016/j.tim.2018.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Amir, M., Kumar, V., Dohare, R., Rehman, M. T., Hussain, A., Alajmi, M. F., et al. (2019). Investigating architecture and structure-function relationships in cold shock DNA-binding domain family using structural genomics-based approach. International Journal of Biological Macromolecules, 133, 484–494. https://doi.org/10.1016/j.ijbiomac.2019.04.135

    Article  CAS  PubMed  Google Scholar 

  38. Tomaras, A. P., Dorsey, C. W., Edelmann, R. E., & Actis, L. A. (2003). Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: Involvement of a novel chaperone-usher pili assembly system. Microbiology, 149(Pt 12), 3473–3484. https://doi.org/10.1099/mic.0.26541-0

    Article  CAS  PubMed  Google Scholar 

  39. McBride, M. J. (2010). Shining a light on an opportunistic pathogen. Journal of Bacteriology., 192(24), 6325–6326. https://doi.org/10.1128/JB.01141-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bai, Y., Rottwinkel, G., Feng, J., Liu, Y., & Lamparter, T. (2016). Bacteriophytochromes control conjugation in Agrobacterium fabrum. Journal of Photochemistry and Photobiology B: Biology, 161, 192–199. https://doi.org/10.1016/j.jphotobiol.2016.05.014

    Article  CAS  PubMed  Google Scholar 

  41. Merrick, C., Rosati, R., & Filingeri, D. (2021). Skin wetness detection thresholds and wetness magnitude estimations of the human index fingerpad and their modulation by moisture temperature. Journal of Neurophysiology, 125(5), 1987–1999. https://doi.org/10.1152/jn.00538.2020

    Article  PubMed  PubMed Central  Google Scholar 

  42. Steimbruch, B. A., Sartorio, M. G., Cortez, N., Albanesi, D., Lisa, M. N., & Repizo, G. D. (2022). The distinctive roles played by the superoxide dismutases of the extremophile Acinetobacter sp. Ver3. Scientific Reports., 12(1), 4321. https://doi.org/10.1038/s41598-022-08052-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sartorio, M. G., Repizo, G. D., & Cortez, N. (2020). Catalases of the polyextremophylic andean isolate acinetobacter sp. Ver 3 confer adaptive response to H2 O2 and UV radiation. FEBS Journal., 287(20), 4525–4539. https://doi.org/10.1111/febs.15244

    Article  CAS  PubMed  Google Scholar 

  44. Pezzoni, M., Pizarro, R. A., & Costa, C. S. (2020). Role of quorum sensing in UVA-induced biofilm formation in Pseudomonas aeruginosa. Microbiology (Reading)., 166(8), 735–750. https://doi.org/10.1099/mic.0.000932

    Article  CAS  PubMed  Google Scholar 

  45. Hendiani, S., Pornour, M., & Kashef, N. (2019). Sub-lethal antimicrobial photodynamic inactivation: An in vitro study on quorum sensing-controlled gene expression of Pseudomonas aeruginosa biofilm formation. Lasers in Medical Science, 34(6), 1159–1165. https://doi.org/10.1007/s10103-018-02707-y

    Article  PubMed  Google Scholar 

  46. Fila, G., Krychowiak, M., Rychlowski, M., Bielawski, K. P., & Grinholc, M. (2018). Antimicrobial blue light photoinactivation of Pseudomonas aeruginosa: Quorum sensing signaling molecules, biofilm formation and pathogenicity. Journal of Biophotonics., 11(11), e201800079. https://doi.org/10.1002/jbio.201800079

    Article  CAS  PubMed  Google Scholar 

  47. Maruyama, T., Sumi, S., Kobayashi, M., Ebuchi, T., Kanesaki, Y., Yoshikawa, H., et al. (2022). Class II LitR serves as an effector of “short” LOV-type blue-light photoreceptor in Pseudomonas mendocina. Scientific Reports., 12(1), 21765. https://doi.org/10.1038/s41598-022-26254-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sumi, S., Mutaguchi, N., Ebuchi, T., Tsuchida, H., Yamamoto, T., Suzuki, M., et al. (2020). Light response of pseudomonas putida KT2440 mediated by class II LitR, a photosensor homolog. Journal of bacteriology., 202, 20. https://doi.org/10.1128/JB.00146-20

    Article  Google Scholar 

  49. Tenover, F. C., & Goering, R. V. (2009). Methicillin-resistant Staphylococcus aureus strain USA300: Origin and epidemiology. The Journal of Antimicrobial Chemotherapy., 64(3), 441–446. https://doi.org/10.1093/jac/dkp241

    Article  CAS  PubMed  Google Scholar 

  50. Xu, H. F., Dai, G. Z., Wang, Y. J., Cheng, C., Shang, J. L., Li, R. H., et al. (2022). Expansion of bilin-based red light sensors in the subaerial desert cyanobacterium Nostoc flagelliforme. Environmental Microbiology., 24(4), 2047–2058. https://doi.org/10.1111/1462-2920.15932

    Article  CAS  PubMed  Google Scholar 

  51. von Bargen, K., Gorvel, J. P., & Salcedo, S. P. (2012). Internal affairs: Investigating the Brucella intracellular lifestyle. FEMS Microbiology Reviews., 36(3), 533–562. https://doi.org/10.1111/j.1574-6976.2012.00334.x

    Article  CAS  Google Scholar 

  52. Kim, H. S., Willett, J. W., Jain-Gupta, N., Fiebig, A., & Crosson, S. (2014). The Brucella abortus virulence regulator, LovhK, is a sensor kinase in the general stress response signalling pathway. Molecular Microbiology., 94(4), 913–925. https://doi.org/10.1111/mmi.12809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gourley, C. R., Petersen, E., Harms, J., & Splitter, G. (2015). Decreased in vivo virulence and altered gene expression by a Brucella melitensis light-sensing histidine kinase mutant. Pathogens and Disease., 73(2), 1–8. https://doi.org/10.1111/2049-632X.12209

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sycz, G., Carrica, M. C., Tseng, T. S., Bogomolni, R. A., Briggs, W. R., Goldbaum, F. A., et al. (2015). LOV Histidine kinase modulates the general stress response system and affects the virB operon expression in Brucella abortus. PLoS ONE, 10(5), e0124058. https://doi.org/10.1371/journal.pone.0124058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gourion, B., Rossignol, M., & Vorholt, J. A. (2006). A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proceedings of the National Academy of Sciences of the United States of America., 103(35), 13186–13191. https://doi.org/10.1073/pnas.0603530103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rinaldi, J., Fernandez, I., Shin, H., Sycz, G., Gunawardana, S., Kumarapperuma, I., et al. (2021). Dimer asymmetry and light activation mechanism in brucella blue-light sensor histidine kinase. MBio, 12, 2. https://doi.org/10.1128/mBio.00264-21

    Article  Google Scholar 

  57. Francez-Charlot, A., Frunzke, J., Reichen, C., Ebneter, J. Z., Gourion, B., & Vorholt, J. A. (2009). Sigma factor mimicry involved in regulation of general stress response. Proceedings of the National Academy of Sciences of the United States of America., 106(9), 3467–3472. https://doi.org/10.1073/pnas.0810291106

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rinaldi, J., Gallo, M., Klinke, S., Paris, G., Bonomi, H. R., Bogomolni, R. A., et al. (2012). The beta-scaffold of the LOV domain of the Brucella light-activated histidine kinase is a key element for signal transduction. Journal of Molecular Biology., 420(1–2), 112–127. https://doi.org/10.1016/j.jmb.2012.04.006

    Article  CAS  PubMed  Google Scholar 

  59. Rinaldi, J., Fernandez, I., Poth, L. M., Shepard, W. E., Savko, M., Goldbaum, F. A., et al. (2018). Crystallization and initial X-ray diffraction analysis of the multi-domain Brucella blue light-activated histidine kinase LOV-HK in its illuminated state. Biochemistry and Biophysics Reports, 16, 39–43. https://doi.org/10.1016/j.bbrep.2018.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  60. Karniol, B., & Vierstra, R. D. (2004). The HWE histidine kinases, a new family of bacterial two-component sensor kinases with potentially diverse roles in environmental signaling. Journal of Bacteriology., 186(2), 445–453. https://doi.org/10.1128/JB.186.2.445-453.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Herrou, J., Crosson, S., & Fiebig, A. (2017). Structure and function of HWE/HisKA2-family sensor histidine kinases. Current Opinion in Microbiology., 36, 47–54. https://doi.org/10.1016/j.mib.2017.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Klinke, S., Foos, N., Rinaldi, J. J., Paris, G., Goldbaum, F. A., Legrand, P., et al. (2015). S-SAD phasing of monoclinic histidine kinase from Brucella abortus combining data from multiple crystals and orientations: An example of data-collection strategy and a posteriori analysis of different data combinations. Acta Crystallographica Section D Biological Crystallography., 71(Pt 7), 1433–1443. https://doi.org/10.1107/S1399004715007622

    Article  CAS  PubMed  Google Scholar 

  63. Rinaldi, J., Arrar, M., Sycz, G., Cerutti, M. L., Berguer, P. M., Paris, G., et al. (2016). Structural insights into the HWE histidine kinase family: the brucella blue light-activated histidine kinase domain. Journal of Molecular Biology., 428(6), 1165–1179. https://doi.org/10.1016/j.jmb.2016.01.026

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Agencia Nacional de Promoción Científica y Tecnológica (PICT 2019-01484) to MAM. MAM, JR and SK are career investigator of CONICET, while BPM, RG, NA and VP are fellows from the same institution. We thank Dr. Mario Feldman for the fruitful discussions regarding the role of light sensing in pathogen’s lifestyle.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gabriela Müller or María Alejandra Mussi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Consent to participate

All authors confirm their participation in this manuscript.

Consent for publication

All authors agree to publication.

Additional information

This manuscript has been submitted for the topical collection "Women in Photobiology".

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arana, N., Perez Mora, B., Permingeat, V. et al. Light regulation in critical human pathogens of clinical relevance such as Acinetobacter baumannii, Staphylococcus aureus and Pseudomonas aeruginosa. Photochem Photobiol Sci 22, 2019–2036 (2023). https://doi.org/10.1007/s43630-023-00437-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00437-x

Navigation