Skip to main content
Log in

Photochemoprevention of topical formulation containing purified fraction of Inga edulis leaves extract

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Natural antioxidants have attracted attention for their therapeutic use as photochemopreventive agents. Inga edulis leaves extract and its purified fraction have high polyphenolic content and high antioxidant capacity. In addition, they presented UV photostability and low citotoxicity in fibroblast cells. In this context, this study first aimed at development of topical formulation containing purified fraction of I. edulis extract and the evaluation of skin penetration of the compounds. Moreover, the photoprotective/photochemopreventive potential of the formulation containing I. edulis purified fraction were investigated in vitro and in vivo. The topical formulation containing 1% of the purified fraction of I. edulis increased the endogenous antioxidant potential of the skin, and vicenin-2 and myricetin compounds were able to penetrate the epidermis and dermis. Additionally, the purified fraction (25 and 50 mg/mL) showed a photoprotective effect against UVA and UVB radiation in L929 fibroblast cells. In vivo studies have shown that the formulation added with purified fraction provided an anti-inflammatory effect on the skin of animals after UVB exposure, since it was observed a reduction in MPO activity, IL-1β and TNF-α cytokines, and CXCL1/KC chemokine concentrations. In conclusion, the purified fraction of I. edulis, rich in phenolic compounds, when incorporated in topical formulation, appears as an alternative to prevent skin damages induced by UV radiation, due to its antioxidant and anti-inflammatory properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be available on demand.

References

  1. Lai-Cheong, J. E., & McGrath, J. A. (2009). Structure and function of skin, hair and nails. Medicine, 37(5), 223–226. https://doi.org/10.1016/j.mpmed.2009.03.002

    Article  Google Scholar 

  2. Sharma, R. R., Deep, A., & Abdullah, S. T. (2021). Herbal products as skincare therapeutic agents against ultraviolet radiation-induced skin disorders. Journal of Ayurveda and Integrative Medicine, 13(1), 100500. https://doi.org/10.1016/j.jaim.2021.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Holick, M. F. (2016). Biological effects of sunlight, ultraviolet radiation, visible light, infrared radiation and vitamin D for health. Anticancer Research, 36(3), 1345–1356.

    CAS  PubMed  Google Scholar 

  4. de Oca, M. K. M., Pearlman, R. L., McClees, S. F., Strickland, R., & Afaq, F. (2017). Phytochemicals for the prevention of photocarcinogenesis. Photochemistry Photobiology, 93, 956–974. https://doi.org/10.1111/php.12711

    Article  CAS  Google Scholar 

  5. Figueiredo, S. A., de Moraes, D. C., Vilela, F. M. P., de Faria, A. N., dos Santos, M. H., & Fonseca, M. J. V. (2018). A novel research model for evaluating sunscreen protection in the UV-A1. Journal of Photochemistry and Photobiology, B: Biology, 178, 61–68. https://doi.org/10.1016/j.jphotobiol.2017.10.031

    Article  CAS  PubMed  Google Scholar 

  6. Divya, S. P., Wang, X., Pratheeshkumar, P., Son, Y.-O., Roy, R. V., Kim, D., Dai, J., Hitron, J. A., Wang, L., Asha, P., Shi, X., & Zhang, Z. (2015). Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signaling pathways in SKH-1 mice skin. Toxicology and Applied Pharmacology, 284(1), 92–99. https://doi.org/10.1016/j.taap.2015.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Figueiredo, S. A., Vilela, F. M. P., da Silva, C. A., Cunha, T. M., dos Santos, M. H., & Fonseca, M. J. V. (2014). In vitro and in vivo photoprotective/photochemopreventive potential of Garcinia brasiliensis epicarp extract. Journal of Photochemistry and Photobiology B: Biology, 131, 65–73. https://doi.org/10.1016/j.jphotobiol.2014.01.004

    Article  CAS  PubMed  Google Scholar 

  8. Afaq, F., & Mukhtar, H. (2006). Botanical antioxidants in the prevention of photocarcinogenesis and photoaging. Experimental Dermatology, 15, 678–684. https://doi.org/10.1111/j.1600-0625.2006.00466.x

    Article  CAS  PubMed  Google Scholar 

  9. Radhiga, T., Agilan, B., Muzaffer, U., Karthikeyan, R., Kanimozhi, G., Paul, V. I., & Prasad, N. R. (2016). Phytochemicals as modulators of ultraviolet-b radiation induced cellular and molecular events: A review. Journal of Radiation and Cancer Research, 7(1), 2–12. https://doi.org/10.4103/0973-0168.184607

    Article  Google Scholar 

  10. Alves, G. A. D., da Silva, D. F., Teixeira, T. V., de Souza, R. O., Rogez, H., & Fonseca, M. J. V. (2020). Obtainment of an enriched fraction of Inga edulis: Identification using UPLC-DAD-MS/MS and photochemopreventive screening. Preparative Biochemistry & Biotechnology, 50(1), 28–36. https://doi.org/10.1080/10826068.2019.1658118

    Article  CAS  Google Scholar 

  11. Souza, J. N. S., Silva, E. M., da Silva, M. N., Arruda, M. S. P., Larondelle, Y., & Rogez, H. (2007). Identification and antioxidant activity of several flavonoids of Inga edulis leaves. Journal of the Brazilian Chemical Society, 18, 1276–1280. https://doi.org/10.1590/S0103-50532007000600025

    Article  CAS  Google Scholar 

  12. Figueiredo, S. A., Vilela, M. F. P., dos Anjos, T. N., de Pádua, A. N. F., & Fonseca, M. J. V. (2021). Evaluation of cell biomarkers as in vitro photoprotective assays for sunscreen formulations. Journal of Basic and Applied Pharmaceutical Sciences, 42, e713. https://doi.org/10.4322/2179-443X.0713

    Article  CAS  Google Scholar 

  13. Laporte, A., Lortz, S., Schaal, C., Lenzen, S., & Elsner, M. (2020). Hydrogen peroxide permeability of cellular membranes in insulin-producing cell. BBB-Biomembranes, 1862(2), 183096. https://doi.org/10.1016/j.bbamem.2019.183096

    Article  CAS  Google Scholar 

  14. Yu, D., Zha, Y., Zhong, Z., Ruan, Y., Li, Z., Sun, L., & Hou, S. (2021). Improved detection of reactive oxygen species by DCFH-DA: New insight into self-amplification of fluorescence signal by light irradiation. Sensors and Actuators B: Chemical, 339, 129878. https://doi.org/10.1016/j.snb.2021.129878

    Article  CAS  Google Scholar 

  15. Wang, H., & Joseph, J. A. (1999). Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Biology & Medicine, 27, 612–616. https://doi.org/10.1016/S0891-5849(99)00107-0

    Article  CAS  Google Scholar 

  16. Silva, D. F. (2012). Extract and medium polarity fraction of Inga edulis: Physico chemical, functional, cytotoxic studies and penetration/retention evaluation of cutaneous topical formulations (p. 119). Dissertation (master). Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil

  17. Vilela, F. M. P., Fonseca, Y. M., Jabor, J. R., Vicentini, F. T. M. C., & Fonseca, M. J. V. (2012). Effect of ultraviolet filters on skin superoxide dismutase activity in hairless mice after a single dose of ultraviolet radiation. European Journal of Pharmaceutics and Biopharmaceutics, 80, 387–392. https://doi.org/10.1016/j.ejpb.2011.10.005

    Article  CAS  PubMed  Google Scholar 

  18. Girotti, S., Fini, F., Ferri, E., Budini, R., Piazzi, S., & Cantagalli, S. (2000). Determination of superoxide dismutase in erytrocytes by a chemiluminescent assay. Talanta, 51, 685–692. https://doi.org/10.1016/S0039-9140(99)00332-X

    Article  CAS  PubMed  Google Scholar 

  19. Georgetti, S. R., Casagrande, R., Di Mambro, M. V., Azzolini, A. E. C. S., & Fonseca, M. J. V. (2003). Evaluation of the antioxidant activity of different flavonoids by the chemiluminescent method. AAPS PharmSci, 5, 210–214. https://doi.org/10.1208/ps050216

    Article  CAS  Google Scholar 

  20. Cayrol, C., Sarraute, J., Tarroux, R., Redoules, D., Charveron, M., & Gall, Y. (1999). A mineral sunscreen affords genomic protection against ultraviolet (UV) B and UVA radiation: in vitro and in situ assays. British Journal of Dermatology, 141(2), 250–258. https://doi.org/10.1046/j.1365-2133.1999.02973.x

    Article  CAS  PubMed  Google Scholar 

  21. Chrétien, M. N., Heafey, E., & Scaiano, J. C. (2010). Reducing adverse effects from UV sunscreens by zeolite encapsulation: Comparison of oxybenzone in solution and in zeolites. Photochemistry and Photobiology, 86, 153–161. https://doi.org/10.1111/j.1751-1097.2009.00644.x

    Article  CAS  PubMed  Google Scholar 

  22. Yoshimoto, S., Kohara, N., Sato, N., Ando, H., & Ichihashi, M. (2020). Riboflavin plays a pivotal role in the UVA-induced cytotoxicity of fibroblasts as a key molecule in the production of H2O2 by UVA radiation in collaboration with amino acids and vitamins. International Journal of Molecular Sciences, 21(2), 554. https://doi.org/10.3390/ijms21020554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vicentini, F. T. M. C., Simi, T. R. M., Del Ciampo, J. O., Wolga, N. O., Pitol, D. L., Iyomasa, M. M., Bentley, M. V. L. B., & Fonseca, M. J. V. (2008). Quercetin in w/o microemulsion: In vitro and in vivo skin penetration and efficacy against UVB-induced skin damages evaluated in vivo. European Journal of Pharmaceutics and Biopharmaceutics, 69(3), 948–957. https://doi.org/10.1016/j.ejpb.2008.01.012

    Article  CAS  PubMed  Google Scholar 

  24. Vilela, F. M. P., Fonseca, Y. M., Vicentini, F. T. M. C., & Fonseca, M. J. V. (2013). Sunscreen protection against ultraviolet-induced oxidative stress: Evaluation of reduced glutathione levels, metalloproteinase secretion, and myeloperoxidase activity. Die Pharmazie - An International Journal of Pharmaceutical Sciences, 68(11), 872–876. https://doi.org/10.1691/ph.2013.3045

    Article  CAS  Google Scholar 

  25. Vilela, F. M. P., Oliveira, F. M., Vicentini, F. T. M. C., Casagrande, R., Verri, W. A., Jr., Cunha, T. M., & Fonseca, M. J. V. (2016). Commercial sunscreen formulations: UVB irradiation stability and effect on UVB irradiation-induced skin oxidative stress and inflammation. Journal of Photochemistry and Photobiology, B: Biology, 163, 413–420. https://doi.org/10.1016/j.jphotobiol.2016.09.007

    Article  CAS  PubMed  Google Scholar 

  26. Bradley, P. P., Priebat, D. A., Christensen, R. D., & Rothstein, G. (1982). Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. Journal of Investigative Dermatology, 78, 206–209. https://doi.org/10.1111/1523-1747.EP12506462

    Article  CAS  PubMed  Google Scholar 

  27. Casagrande, R., Georgetti, S. R., Verri, W. A., Jr., Dorta, D. J., dos Santos, A. C., & Fonseca, M. J. V. (2006). Protective effect of topical formulations containing quercetin against UVB-induced oxidative stress in hairless mice. Journal of Photochemistry and Photobiology B: Biology, 84(1), 21–27. https://doi.org/10.1016/j.jphotobiol.2006.01.006

    Article  CAS  PubMed  Google Scholar 

  28. Zou, B., Xiao, G., Xu, Y., Wu, J., Yu, Y., & Fu, M. (2018). Persimmon vinegar polyphenols protect against hydrogen peroxide-induced cellular oxidative stress via Nrf2 signalling pathway. Food Chemistry, 255, 23–30. https://doi.org/10.1016/j.foodchem.2018.02.028

    Article  CAS  PubMed  Google Scholar 

  29. Domitrović, R., Rashed, K., Cvijanović, O., Vladimir-Knežević, S., Škoda, M., & Višnić, A. (2015). Myricitrin exhibits antioxidant, anti-inflammatory and antifibrotic activity in carbon tetrachloride-intoxicated mice. Chemico-Biological Interactions, 230, 21–29. https://doi.org/10.1016/j.cbi.2015.01.030

    Article  CAS  PubMed  Google Scholar 

  30. Petruk, G., Illiano, A., Giudice, R. D., Raiola, A., Amoresano, A., Rigano, M. M., Piccoli, R., & Monti, D. M. (2017). Malvidin and cyanidin derivatives from açai fruit (Euterpe oleracea Mart.) counteract UV-A-induced oxidative stress in immortalized fibroblasts. Journal of Photochemistry and Photobiology B: Biology, 172, 42–51. https://doi.org/10.1016/j.jphotobiol.2017.05.013

    Article  CAS  PubMed  Google Scholar 

  31. Ryšava, A., Čižkova, K., Frankova, J., Roubalova, L., Ulrichova, J., Vostalovaa, J., Vrba, J., Zalešak, B., & Svobodova, A. R. (2020). Effect of UVA radiation on the Nrf2 signaling pathway in human skin cells. Journal of Photochemistry & Photobiology, B: Biology, 209, 111948. https://doi.org/10.1016/j.jphotobiol.2020.111948

    Article  CAS  Google Scholar 

  32. Jiang, S. J., Chen, J. Y., Lu, Z. F., Yao, J., Che, F. D., & Zhou, X. J. (2006). Biophysical and morphological changes in the stratum corneum lipids induced by UVB irradiation. Journal of Dermatological Science, 44, 29–36. https://doi.org/10.1016/j.jdermsci.2006.05.012

    Article  CAS  PubMed  Google Scholar 

  33. Budai, M., Reynaud-Angelin, A., Szabo, Z., Tóth, S., Rontó, G., Sage, E., & Gróf, P. (2004). Effect of UVA radiation on membrane fluidity and radical decay in human fibroblasts as detected by spin labeled stearic acids. Journal of Photochemistry and Photobiology B: Biology, 77, 27–38. https://doi.org/10.1016/j.jphotobiol.2004.08.003

    Article  CAS  PubMed  Google Scholar 

  34. Moser, K., Kriwet, K., Naik, A., Kalia, Y. N., & Guy, R. H. (2001). Passive skin penetration enhancement and its quantification in vitro. European Journal of Pharmaceutics and Biopharmaceutics, 54(2), 103–112. https://doi.org/10.1016/S0939-6411(01)00166-7

    Article  Google Scholar 

  35. Getie, M., Gebre-Mariam, T., Rietz, R., & Neubert, R. H. H. (2002). Evaluation of the release profiles of flavonoids from topical formulations of the crude extract of the leaves of Dodonea viscosa (Sapindaceae). Pharmazie, 57, 320–322.

    CAS  PubMed  Google Scholar 

  36. Wester, C. R. & Maibach, H. L. (1990). In vitro testing of topical pharmaceutical formulations. In: D. W. Osborne & A. H. Amamnn, Topical drug delivery formulations (pp. 213–220). Marcel Dekker

  37. Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55, 481–504. https://doi.org/10.1016/S0031-9422(00)00235-1

    Article  CAS  PubMed  Google Scholar 

  38. Liakoura, V., Bornean, J. F., & Karabourniotis, G. (2003). The ability of abaxial and adaxial epiderms of sun and shade leaves to attenuate UV-A and UV-B radiation of ultraviolet-absorbing sunscreens in field-grown soybean crops. Plant Physiology, 122, 117–125. https://doi.org/10.1034/j.1399-3054.2003.1170104.x

    Article  Google Scholar 

  39. Merzlyak, M. N., Solovchenko, A. E., Smagin, A. I., & Gitelson, A. A. (2005). Apple flavonols during fruit adaptation to solar radiation: spectral features and technique for non-destructive assessment. Journal of Plant Physiology, 162, 151–160. https://doi.org/10.1016/j.jplph.2004.07.002

    Article  CAS  PubMed  Google Scholar 

  40. Halliday, G. M., Norval, M., Byrne, S. N., Huang, X. X., & Wolf, P. (2008). The effects of sunlight on the skin. Drug Discovery Today: Disease Mechanisms/Common skin conditions and disorders, 5(2), e201–e209. https://doi.org/10.1016/j.ddmec.2008.04.005

    Article  Google Scholar 

  41. Svobodova, A., Walterova, D., & Vostalova, J. (2006). Ultraviolet light induced alteration to the skin. Biomedical papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 150(1), 25–38. https://doi.org/10.5507/bp.2006.003

    Article  CAS  PubMed  Google Scholar 

  42. Luster, A. D., Alon, R., & Von Adrian, U. H. (2005). Immune cell migration in inflammation: present and future therapeutic targets. Nature Immunology, 6(12), 1182–1190.

    Article  CAS  PubMed  Google Scholar 

  43. Khan, A. A., Alsahli, M. A., & Rahmani, A. H. (2018). Myeloperoxidase as an active disease biomarker: Recent biochemical and pathological perspectives. Medical Sciences (Basel, Switzerland), 6(2), 33. https://doi.org/10.3390/medsci6020033

    Article  CAS  PubMed  Google Scholar 

  44. Lee, B.-S., Yang, S., Lee, C., Ku, S.-K., & Bae, J.-S. (2020). Renal protective effects of vicenin-2 and scolymoside in a mouse model of sepsis. Brazilian Journal of Pharmaceutical Sciences, 56, e18636. https://doi.org/10.1590/s2175-97902019000418636

    Article  CAS  Google Scholar 

  45. Zhang, X., Zhang, K., Wang, Y., & Ma, R. (2020). Effects of myricitrin and relevant mechanisms. Current Stem Cell Research & Therapy, 15, 11–17. https://doi.org/10.2174/1574888X14666181126103338

    Article  Google Scholar 

  46. Müller, K., & Meineke, V. (2007). Radiation-induced alterations in cytokine production by skin cells. Experimental Hematology, 35, 96–104. https://doi.org/10.1016/j.exphem.2007.01.017

    Article  CAS  PubMed  Google Scholar 

  47. Baggiolini, M., Dewald, B., & Moser, B. (1994). Interleukin-8 and related chemotactic cytokines-CXC and CC chemokines. Advances in Immunology, 55, 97–179. https://doi.org/10.1016/S0065-2776(08)60509-X

    Article  CAS  PubMed  Google Scholar 

  48. Murphy, P. M. (1997). Neutrophil receptors for interleukin-8 and related CXC chemokines. Seminars in Hematology, 34(4), 311–318.

    CAS  PubMed  Google Scholar 

  49. Cassatella, M. A. (1999). Neutrophil-derived proteins: selling cytokines by the pound. Advances in Immunology, 73, 369–509. https://doi.org/10.1016/s0065-2776(08)60791-9

    Article  CAS  PubMed  Google Scholar 

  50. Yin, Y., Ye, L., Niu, Z., & Fang, W. (2019). Anti-inflammatory effects of vicenin-2 on dextran sulfate sodium-induced colitis in mice. Drug Development Research, 80, 546–555. https://doi.org/10.1002/ddr.21529

    Article  CAS  PubMed  Google Scholar 

  51. Kan, X., Liu, B., Guo, W., Wei, L., Lin, Y., Guo, Y., Gong, Q., Li, Y., Xu, D., Cao, Y., Huang, B., Dong, A., Ma, H., Fu, S., & Liu, J. (2019). Myricetin relieves LPS-induced mastitis by inhibiting inflammatory response and repairing the blood-milk barrier. Journal of Cellular Physiology, 234, 16252–16262. https://doi.org/10.1002/jcp.28288

    Article  CAS  PubMed  Google Scholar 

  52. Mao, M. T., & Huang, M. Y. (2017). Myricetin attenuates lung inflammation and provides protection against lipopolysaccharide-induced acute lung injury by inhibition of NF-κB pathway in rats. Tropical Journal of Pharmaceutical Research, 16(11), 2585–2593. https://doi.org/10.4314/tjpr.v16i11.3

    Article  CAS  Google Scholar 

  53. Song, X., Tan, L., Wang, M., Ren, C., Guo, C., Yang, B., Ren, Y., Cao, Z., Li, Y., & Pei, J. (2021). Myricetin: A review of the most recente research. Biomedicine & Pharmacotherapy, 134, 111017. https://doi.org/10.1016/j.biopha.2020.111017

    Article  CAS  Google Scholar 

  54. Lee, D., & Lee, C. S. (2016). Flavonoid myricetin inhibits TNF-α-stimulated production of inflammatory mediators by suppressing the Akt, mTOR and NF-κβ pathways in human keratinocytes. European Journal of Pharmacology, 784, 164–172. https://doi.org/10.1016/j.ejphar.2016.05.025

    Article  CAS  PubMed  Google Scholar 

  55. Xie, J., & Zheng, Y. (2017). Myricetin protects keratinocyte damage induced by UV through IκB/NFκb signaling pathway. Journal of Cosmetic Dermatology, 16(4), 444–449. https://doi.org/10.1111/jocd.12399

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for financial support. The authors also thank Professor Hervé Louis Ghislain Rogez from Federal University of Pará - Brazil for kindly providing the purified fraction of Inga edulis extract.

Funding

This work was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brazil [grant number 166315/2013-3] and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brazil [grant number 001].

Author information

Authors and Affiliations

Authors

Contributions

KCC performed the experiments, collected the data and evaluated the results; FMPV and SAF performed the evaluation and interpretation of the data and the writing of the article; CHFC performed the evaluation and interpretation of the data; MJVF designed the study and performed the interpretation of the data and wrote the article.

Corresponding author

Correspondence to Maria José Vieira Fonseca.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-fnancial interests to disclose.

Ethical approval

The Ethics Committee of the Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, approved the study with the use of animals under Protocol # 13.1.525.53.1.

Consent of publication

All authors agree with the publication of this manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, K.C., Cuelho, C.H.F., Figueiredo, S.A. et al. Photochemoprevention of topical formulation containing purified fraction of Inga edulis leaves extract. Photochem Photobiol Sci 22, 2105–2120 (2023). https://doi.org/10.1007/s43630-023-00433-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00433-1

Keywords

Navigation