Skip to main content
Log in

Photochemistry of phthalimidoadamantane dipeptides: effect of amino acid side chain on photocyclization

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A series of dipeptides 1 was synthesized that at the N-site contained 3-(N-phthalimidoadamantane-1-carboxylic acid and at the C-site different aliphatic or aromatic l- or d-amino acids. The photochemical reaction of dipeptides 1 under acetone-sensitized conditions gave simple decarboxylation products 6, and decarboxylation-induced cyclization products 7, as well as some secondary products 8 and 9 formed by elimination of H2O or ring enlargement, respectively. Molecules 9 undergo secondary photoinduced H-abstractions by the phthalimide chromophore, delivering more complex polycycles 11. The photodecarboxylation-induced cyclization to 7 was observed only with phenylalanine (Phe), proline (Pro), leucine (Leu) and isoleucine (Ile). Contrary to dipeptides with Phe, the cyclization takes place with almost complete racemization at the amino acid chiral center, but diastereoselectively giving only one pair of enantiomers. The conducted investigation is important as it provides the breath and the scope of dipeptide cyclizations activated by phthalimides.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1

Similar content being viewed by others

Data availability

On request from the authors or via a website: https://mojoblak.irb.hr/s/PXPWDXZ2QCp3daC. Samples are available from the authors on request.

References

  1. Yoon, U. C., & Mariano, P. S. (2001). The synthetic potential of phthalimide SET photochemistry. Accounts of Chemical Research, 34, 523–533.

    CAS  PubMed  Google Scholar 

  2. Griesbeck, A. G., Hoffmann, N., & Warzecha, K.-D. (2007). Photoinduced electron transfer chemistry: From studies on PET processes to applications in natural product synthesis. Accounts of Chemical Research, 40, 128–140.

    CAS  PubMed  Google Scholar 

  3. Kanaoka, Y. (1978). Photoreactions of cyclic imides. Examples of synthetic organic photochemistry. Accounts of Chemical Research, 11, 407–413.

    CAS  Google Scholar 

  4. McDermott, G., Yoo, D. J., & Oelgemöller, M. (2005). Photochemical addition reactions involving phthalimides. Heterocycles, 65, 2221–2257.

    CAS  Google Scholar 

  5. Horvat, M., Mlinarić-Majerski, K., & Basarić, N. (2010). Photochemistry of N-alkyl and N-aryl substituted phthalimides: H-abstractions, single elelctron transfer and cycloadditions. Croatica Chemica Acta, 83, 179–188.

    CAS  Google Scholar 

  6. Oelgemöller, M., & Griesbeck, A. G. (2004). Photoinduced electron-transfer processes of phthalimides. In W. Horspool & F. Lenci (Eds.), CRC handbook of organic photochemistry and photobiology (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  7. Oelgemöller, M., & Griesbeck, A. G. (2002). Photoinduced electron transfer chemistry of phthalimdes: An efficient tool for C-C-bond formation. Journal of Photochemistry and Photobiology, C: Photochemistry Reviews, 3, 109–127.

    Google Scholar 

  8. Yoon, U. C., & Mariano, P. S. (2004). The photochemistry of silicon-substituted phthalimides. In W. Horspool & F. Lenci (Eds.), CRC handbook of organic photochemistry and photobiology (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  9. Soldevilla, A., & Griesbeck, A. G. (2006). Chiral photocages based on phthalimide photochemistry. Journal of the American Chemical Society, 128, 16472–16473.

    CAS  PubMed  Google Scholar 

  10. Griesbeck, A. G., Henz, A., Peters, K., Peters, E.-M., & von Schnering, H. G. (1995). Photo electron transfer induced macrocyclization of N-phthaloyl-ω-aminocarboxylic acids. Angewandte Chemie International Edition, 34, 474–476.

    CAS  Google Scholar 

  11. Griesbeck, A. G., Heinrich, T., Oelgemöller, M., Lex, J., & Molis, A. (2002). A Photochemical route for efficient cyclopeptide formation with a minimum of protection and activation chemistry. Journal of the American Chemical Society, 124, 10972–10973.

    CAS  PubMed  Google Scholar 

  12. Yoon, U. C., Jin, Y. H., Oh, S. W., Park, C. H., Park, J. H., Campana, C. F., Cai, X., Duesler, E. N., & Mariano, P. S. (2003). A synthetic strategy for the preparation of cyclic peptide mimetics based on SET-promoted photocyclization processes. Journal of the American Chemical Society, 125, 10664–10671.

    CAS  PubMed  Google Scholar 

  13. Lee, Y.-J., Ahn, D.-H., Lee, K.-S., Kim, A. R., Yoo, D. J., & Oelgemöller, M. (2011). Photoinduced electron transfer cyclizations of aryl-linked phthalimides. Tetrahedron Letters, 52, 5029–5031.

    CAS  Google Scholar 

  14. Hatoum, F., Gallagher, S., & Oelgemöller, M. (2009). Photodecarboxylative additions of phenoxyacetates to N-methylphthalimide. Tetrahedron Letters, 50, 6593–6596.

    CAS  Google Scholar 

  15. Hatoum, F., Engler, J., Zelmer, C., Wißen, J., Motti, C. A., Lex, J., & Oelgemöller, M. (2012). Photodecarboxylative addition of carboxylates to phthalimides: A concise access to biologically active 3-(alkyl and aryl)methylene-1H-isoindolin-1-ones. Tetrahedron Letters, 53, 5573–5577.

    CAS  Google Scholar 

  16. Griesbeck, A. G., & Oelgemöller, M. (1999). Photodecarboxylative addition of carboxylates and α-Keto carboxylates to phthalimides. Synlett, 1999, 492–494.

    Google Scholar 

  17. Hatoum, F., Gallagher, S., Baragwanath, L., Lex, J., & Oelgemöller, M. (2009). Photodecarboxylative benzylations of phthalimides. Tetrahedron Letters, 50, 6335–6338.

    CAS  Google Scholar 

  18. Belluau, V., Noeureuil, P., Ratzke, E., Skvortsov, A., Gallagher, S., Motti, C. A., & Oelgemöller, M. (2010). Photodecarboxylative benzylations of phthalimide in pH 7 buffer: A simple access to 3-arylmethyleneisoindolin-1-ones. Tetrahedron Letters, 51, 4738–4741.

    CAS  Google Scholar 

  19. Gallagher, S., Hatoum, F., Zientek, N., & Oelgemöller, M. (2010). Photodecarboxylative additions of N-protected α-amino acids to N-methylphthalimide. Tetrahedron Letters, 51, 3639–3641.

    CAS  Google Scholar 

  20. Mandić, L., Mlinarić-Majerski, K., Griesbeck, A. G., & Basarić, N. (2016). Photodecarboxylation of adamantane amino acids activated by phthalimide. European Journal of Organic Chemistry, 2016, 4404–4414.

    Google Scholar 

  21. Sohora, M., Šumanovac Ramljak, T., Mlinarić-Majerski, K., & Basarić, N. (2014). Photodecarboxylation of N-Adamantyl and N-Phenylphthalimide dipeptide derivatives. Croatica Chemica Acta, 87, 431–446.

    Google Scholar 

  22. Horvat, M., Mlinarić-Majerski, K., Griesbeck, A. G., & Basarić, N. (2011). Photoinduced decarboxylation of 3-(N-phthalimido)adamantane-1-carboxylic acid and radical addition to electron deficient alkenes. Photochemical & Photobiological Sciences, 10, 610–617.

    CAS  Google Scholar 

  23. Mandić, L., Džeba, I., Jadreško, D., Mihaljević, B., Biczók, L., & Basarić, N. (2020). Photophysical properties and electron transfer photochemical reactivity of substituted phthalimides. New Journal of Chemistry, 44, 17252–17266.

    Google Scholar 

  24. Mandić, L., Sohora, M., Mihaljević, B., Biczók, L., & Basarić, N. (2021). The effect of the rate of photoinduced electron transfer on the photodecarboxylation efficiency in phthalimide photochemistry. Journal of Photochemistry and Photobiology, A: Chemistry, 408, 113109–113116.

    Google Scholar 

  25. Šumanovac Ramljak, T., Sohora, M., Antol, I., Kontrec, D., Basarić, N., & Mlinarić-Majerski, K. (2014). Memory of chirality in the phthalimide photocyclization of adamantane dipeptides. Tetrahedron Letters, 55, 4078–4081.

    Google Scholar 

  26. Sohora, M., Vazdar, M., & Sović, I., Mlinarić-Majerski, K., Basarić, N.,. (2018). Photocyclization of tetra- and pentapeptides containing adamantylphthalimide and phenylalanines: Reaction efficiency and diastereoselectivity. Journal of Organic Chemistry, 83, 14905–14922.

    CAS  PubMed  Google Scholar 

  27. Horvat, M., Görner, H., Warzecha, K.-D., Neudörfl, J., Griesbeck, A. G., Mlinarić-Majerski, K., & Basarić, N. (2009). Photoinitiated domino reactions: N-(Adamantyl)phthalimides and N-(Adamantylalkyl)phthalimides. Journal of Organic Chemistry, 74, 8219–8231.

    CAS  PubMed  Google Scholar 

  28. Nielsen, D. S., Shepherd, N. E., Xu, W., Lucke, A. J., Stoermer, M. J., & Fairlie, D. P. (2017). Orally absorbed cyclic peptides. Chemical Reviews, 117, 8094–8128.

    CAS  PubMed  Google Scholar 

  29. Kaur, R., Goyal, A., & Arora, S. (2017). A review on pharmacological activities of different classes of cyclic peptides. International Journal of Recent Scientific Research, 8, 18193–18198.

    Google Scholar 

  30. Joo, S. H. (2012). Cyclic peptides as therapeutic agents and biochemical tools. Biomolecules and Therapeutics, 20, 19–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Deber, C. M., Madison, V., & Blout, E. R. (1976). Why cyclic peptides? Complementary approaches to conformations. Accounts of Chemical Research, 9, 106–113.

    CAS  Google Scholar 

  32. Kessler, H. (1982). Conformation and biological activity of cyclic peptides. Angewandte Chemie International Edition, 21, 512–523.

    Google Scholar 

  33. Rezai, T., Yu, B., Millhauser, G. L., Jacobson, M. P., & Lokey, R. S. (2006). Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. Journal of the American Chemical Society, 128, 2510–2511.

    CAS  PubMed  Google Scholar 

  34. Li, G., & De Clercq, E. (2017). Current therapy for chronic hepatitis C: The role of direct-acting antivirals. Antiviral Research, 142, 83–122.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Roxin, Á., & Zheng, G. (2012). Flexible or fixed: A comparative review of linear and cyclic cancer-targeting peptides. Future Medical Chemistry, 4, 1601–1618.

    CAS  Google Scholar 

  36. Aina, O. H., Sroka, T. C., Chen, M.-L., & Lam, K. S. (2002). Therapeutic cancer targeting peptides. Biopolymers, 66, 184–199.

    CAS  PubMed  Google Scholar 

  37. Kawabata, T., Yahiro, K., & Fuji, K. (1991). Memory of chirality: Enantioselective alkylation reactions at an asymmetric carbon adjacent to a carbonyl group. Journal of the American Chemical Society, 113, 9694–9696.

    CAS  Google Scholar 

  38. Fuji, K., & Kawabata, T. (1998). Memory of chirality—A new principle in Enolate chemistry. Chemistry–A European Journal, 4, 373–376.

    CAS  Google Scholar 

  39. Griesbeck, A. G., Kramer, W., & Lex, J. (2001). Diastereo- and Enantioselective Synthesis of Pyrrolo[1,4]benzodiazepines through Decarboxylative Photocyclization. Angewandte Chemie International Edition, 40, 577–579.

    CAS  PubMed  Google Scholar 

  40. Giese, B., Wettstein, P., Stähelin, C., Barbosa, F., Neuburger, M., Zehnder, M., & Wessig, P. (1999). Memory of chirality in photochemistry. Angewandte Chemie International Edition, 38, 2586–2587.

    CAS  PubMed  Google Scholar 

  41. Jesuraj, J. L., & Sivaguru, J. (2010). Photochemical type II reaction of atropchiral benzoylformamides to point chiral oxazolidin-4-ones. Axial chiral memory leading to enantiomeric resolution of photoproducts. Chemical Communications, 46, 4791–4793.

    CAS  PubMed  Google Scholar 

  42. Ayitou, A.J.-L., Jesuraj, J. L., Barooah, N., Ugrinov, A., & Sivaguru, J. (2009). Journal of the American Chemical Society, 131, 11314–11315.

    CAS  PubMed  Google Scholar 

  43. Ayitou, A.J.-L., & Sivaguru, J. (2009). Light-induced transfer of molecular chirality in solution: Enantiospecific photocyclization of molecularly chiral acrylanilides. Journal of the American Chemical Society, 131, 5036–5037.

    CAS  PubMed  Google Scholar 

  44. Siddique, B., & Duhamel, J. (2011). Effect of polypeptide sequence on polypeptide self-assembly. Langmuir, 27, 6639–6650.

    CAS  PubMed  Google Scholar 

  45. Griesbeck, A. G., Abe, M., & Bondock, S. (2004). Selectivity control in electron spin inversion processes: Regio and stereochemistry of Paternò-Büchi photocycloadditions as a powerful tool for mapping intersystem crossing processes. Accounts of Chemical Research, 37, 919–928.

    CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the Croatian Science Foundation (HRZZ grants no. HRZZ IP-2014-09-6312 and HRZZ-IP-2019-04-8008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margareta Sohora.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Informed consent

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

43630_2023_430_MOESM1_ESM.pdf

Supplementary file1 (PDF 11597 KB) Synthetic procedures and selected photochemical experiments, HPLC chromatograms on chiral stationary phases, computational data and copies of 1H and 13C NMR spectra.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohora, M., Sović, I., Spahić, Z. et al. Photochemistry of phthalimidoadamantane dipeptides: effect of amino acid side chain on photocyclization. Photochem Photobiol Sci 22, 2071–2080 (2023). https://doi.org/10.1007/s43630-023-00430-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00430-4

Keywords

Navigation