Skip to main content
Log in

A water-soluble small molecular fluorescent sensor based on phosphazene platform for selective detection of nitroaromatic compounds

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Nitro-aromatic compounds have a deleterious effect on the environment and they are extremely explosive. Therefore, societal concern about exposure to nitro-aromatic compounds encourages researchers to develop selective and sensitive detection platforms for nitro-aromatic compounds in recent years. In this paper, a new 100% water-soluble cyclotriphosphazene-based bridged naphthalene material (4) was prepared as a small molecule fluorescent sensor for ultra-selective detection of nitro-aromatic compounds. The chemical structure of 4 was extensively characterized by mass spectrometry and nuclear magnetic resonance spectroscopies (31P, 13C, 1H). The photo-physical properties of the newly developed sensing system were investigated by steady-state fluorescence and UV–Vis absorption spectroscopies. The fluorescence sensor behaviors were extensively evaluated after treatment with the most commonly used metal cations, anions, competitive aromatic compounds, saccharides, and organic acids. The developed fluorescent sensing system (4) demonstrated ultra-selective fluorescence “turn-off” signal change toward nitro-aromatic compounds while other tested competitive species caused negligible changes. To evaluate selectivity, time-resolved, steady-state 3D-fluorescence and UV–Vis absorption spectroscopies were used in fully aqueous media. Moreover, theoretical calculations (density functional theory and time-dependent density functional theory) were applied and discussed to identify fluorescence sensing mechanisms toward nitroaromatic compounds for the presented sensing system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The authors do declare that all raw and/or processed data possessed by them and provided in this contribution are available to the Journal's Editor upon any such request.

References

  1. Shanmugaraju, S., & Mukherjee, P. S. (2015). π-Electron rich small molecule sensors for the recognition of nitroaromatics. Chemical Communications, 51, 16014–16032. https://doi.org/10.1039/C5CC07513K

    Article  CAS  PubMed  Google Scholar 

  2. Ardic Alidagi, H., Tümay, S. O., Şenocak, A., Çiftbudak, Ö. F., Çoşut, B., & Yeşilot, S. (2019). Constitutional isomers of dendrimer-like pyrene substituted cyclotriphosphazenes: Synthesis, theoretical calculations, and use as fluorescence receptors for the detection of explosive nitroaromatics. New Journal of Chemistry, 43, 16738–16747. https://doi.org/10.1039/C9NJ03695D

    Article  CAS  Google Scholar 

  3. Yew, Y. T., Ambrosi, A., & Pumera, M. (2016). Nitroaromatic explosives detection using electrochemically exfoliated graphene. Scientific Reports, 6, 33276. https://doi.org/10.1038/srep33276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ostafin, M., & Nogaj, B. (2007). 14N-NQR based device for detection of explosives in landmines. Measurement, 40, 43–54. https://doi.org/10.1016/j.measurement.2006.04.003

    Article  Google Scholar 

  5. Hakimifar, A., & Morsali, A. (2019). High-sensitivity detection of nitroaromatic compounds (NACs) by the pillared-layer metal-organic framework synthesized via ultrasonic method. Ultrasonics Sonochemistry, 52, 62–68. https://doi.org/10.1016/j.ultsonch.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  6. Shi, X., Qiu, X., Jiang, X., Rudich, Y., & Zhu, T. (2021). Comprehensive detection of nitrated aromatic compounds in fine particulate matter using gas chromatography and tandem mass spectrometry coupled with an electron capture negative ionization source. Journal of Hazardous Materials, 407, 124794. https://doi.org/10.1016/j.jhazmat.2020.124794

    Article  CAS  PubMed  Google Scholar 

  7. Heleg-Shabtai, V., Sharabi, H., Zaltsman, A., Ron, I., & Pevzner, A. (2020). Surface-enhanced Raman spectroscopy (SERS) for detection of VX and HD in the gas phase using a hand-held Raman spectrometer. The Analyst, 145, 6334–6341. https://doi.org/10.1039/D0AN01170C

    Article  CAS  PubMed  Google Scholar 

  8. Tümay, S. O. (2021). A novel selective “turn-on” fluorescent chemosensor based on thiophene appended cyclotriphosphazene schiff base for detection of Ag+ ions. Chemistry, 6, 10561–10572. https://doi.org/10.1002/slct.202102052

    Article  CAS  Google Scholar 

  9. Tümay, S. O., Irani-Nezhad, M. H., & Khataee, A. (2021). Multi-anthracene containing fluorescent probe for spectrofluorimetric iron determination in environmental water samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 248, 119250. https://doi.org/10.1016/j.saa.2020.119250

    Article  CAS  PubMed  Google Scholar 

  10. Tümay, S. O., Şenocak, A., & Mermer, A. (2021). A “turn-on” small molecule fluorescent sensor for the determination of Al3+ ion in real samples: Theoretical calculations, and photophysical and electrochemical properties. New Journal of Chemistry, 45, 18400–18411. https://doi.org/10.1039/D1NJ03462F

    Article  Google Scholar 

  11. Samanta, D., Shanmugaraju, S., Joshi, S. A., Patil, Y. P., Nethaji, M., & Mukherjee, P. S. (2012). Pillar height dependent formation of unprecedented Pd8 molecular swing and Pd6 molecular boat via multicomponent self-assembly. Chemical Communications, 48, 2298–2300. https://doi.org/10.1039/C2CC16345D

    Article  CAS  PubMed  Google Scholar 

  12. Tang, B., Ding, B., Xu, K., & Tong, L. (2009). Use of selenium to detect mercury in water and cells: an enhancement of the sensitivity and specificity of a seleno fluorescent probe. Chemistry: A European Journal, 15, 3147–3151. https://doi.org/10.1002/chem.200802165

    Article  CAS  PubMed  Google Scholar 

  13. Kartha, K. K., Sandeep, A., Praveen, V. K., & Ajayaghosh, A. (2015). Detection of nitroaromatic explosives with fluorescent molecular assemblies and π-gels. The Chemical Record, 15, 252–265. https://doi.org/10.1002/tcr.201402063

    Article  CAS  PubMed  Google Scholar 

  14. Xu, S., & Lu, H. (2015). Ratiometric fluorescence and mesoporous structure dual signal amplification for sensitive and selective detection of TNT based on MIP@QD fluorescence sensors. Chemical Communications, 51, 3200–3203. https://doi.org/10.1039/C4CC09766A

    Article  CAS  PubMed  Google Scholar 

  15. Nagarkar, S. S., Desai, A. V., Samanta, P., & Ghosh, S. K. (2015). Aqueous phase selective detection of 2,4,6-trinitrophenol using a fluorescent metal–organic framework with a pendant recognition site. Dalton Transactions, 44, 15175–15180. https://doi.org/10.1039/C5DT00397K

    Article  CAS  PubMed  Google Scholar 

  16. Rochat, S., & Swager, T. M. (2013). Conjugated amplifying polymers for optical sensing applications. ACS Applied Materials & Interfaces, 5, 4488–4502. https://doi.org/10.1021/am400939w

    Article  CAS  Google Scholar 

  17. Shaw, P. E., Chen, S. S. Y., Wang, X., Burn, P. L., & Meredith, P. (2013). High-generation dendrimers with excimer-like photoluminescence for the detection of explosives. The Journal of Physical Chemistry C, 117, 5328–5337. https://doi.org/10.1021/jp4002884

    Article  CAS  Google Scholar 

  18. Huguet, N., Jevtovikj, I., Gordillo, A., Lejkowski, M. L., Lindner, R., Bru, M., Khalimon, A. Y., Rominger, F., Schunk, S. A., Hofmann, P., & Limbach, M. (2014). Nickel-catalyzed direct carboxylation of olefins with CO2: One-pot synthesis of α, β-unsaturated carboxylic acid salts. Chemistry—A European Journal, 20, 16858–16862. https://doi.org/10.1002/chem.201405528

    Article  CAS  PubMed  Google Scholar 

  19. McCluskey, A., Holdsworth, C. I., & Bowyer, M. C. (2007). Molecularly imprinted polymers (MIPs): Sensing, an explosive new opportunity? Organic & Biomolecular Chemistry, 5, 3233–3244. https://doi.org/10.1039/B708660A

    Article  CAS  Google Scholar 

  20. Kaur, S., Gupta, A., Bhalla, V., & Kumar, M. (2014). Pentacenequinone derivatives: Aggregation-induced emission enhancement, mechanism and fluorescent aggregates for superamplified detection of nitroaromatic explosives. Journal of Materials Chemistry C, 2, 7356–7363. https://doi.org/10.1039/C4TC01194E

    Article  CAS  Google Scholar 

  21. Chopra, R., Bhalla, V., Kumar, M., & Kaur, S. (2015). Rhodamine appended hexaphenylbenzene derivative: Through bond energy transfer for sensing of picric acid. RSC Advances, 5, 24336–24341. https://doi.org/10.1039/C5RA00436E

    Article  CAS  Google Scholar 

  22. Tümay, S. O., & Yeşilot, S. (2021). Small molecule based water-soluble fluorescence material for highly selective and ultra-sensitive detection of TNT: Design and spectrofluorimetric determination in real samples. Sensors and Actuators B: Chemical, 343, 130088. https://doi.org/10.1016/j.snb.2021.130088

    Article  CAS  Google Scholar 

  23. Mosca, L., Karimi Behzad, S., & Anzenbacher, P. (2015). Small-molecule turn-on fluorescent probes for RDX. Journal of the American Chemical Society, 137, 7967–7969. https://doi.org/10.1021/jacs.5b04643

    Article  CAS  PubMed  Google Scholar 

  24. Venkatramaiah, N., Pereira, C. F., Mendes, R. F., Paz, F. A. A., & Tomé, J. P. C. (2015). Phosphonate appended porphyrins as versatile chemosensors for selective detection of trinitrotoluene. Analytical Chemistry, 87, 4515–4522. https://doi.org/10.1021/acs.analchem.5b00772

    Article  CAS  PubMed  Google Scholar 

  25. Ma, X.-S., Wang, D.-H., Cui, Y.-Z., Tao, F.-R., Wang, Y.-T., & Li, T.-D. (2017). A novel hydrophilic conjugated polymer containing hydroxyl groups: Syntheses and sensing performance for NACs in aqueous solution. Sensors and Actuators B: Chemical, 251, 851–857. https://doi.org/10.1016/j.snb.2017.05.120

    Article  CAS  Google Scholar 

  26. Aathimanikandan, S. V., Sandanaraj, B. S., Arges, C. G., Bardeen, C. J., & Thayumanavan, S. (2005). Effect of guest molecule flexibility in access to dendritic interiors. Organic Letters, 7, 2809–2812. https://doi.org/10.1021/ol050579b

    Article  CAS  PubMed  Google Scholar 

  27. Fery-Forgues, S., & Lavabre, D. (1999). Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. Journal of Chemical Education, 76, 1260. https://doi.org/10.1021/ed076p1260

    Article  CAS  Google Scholar 

  28. Melhuish, W. H. (1961). Quantum efficiencies of fluorescence of organic substances: Effect of solvent and concentration of the fluorescent solute1. The Journal of Physical Chemistry, 65, 229–235. https://doi.org/10.1021/j100820a009

    Article  CAS  Google Scholar 

  29. Prabakaran, S., Nisha, K. D., Harish, S., Archana, J., & Navaneethan, M. (2021). Yttrium incorporated TiO2/rGO nanocomposites as an efficient charge transfer layer with enhanced mobility and electrical conductivity. Journal of Alloys and Compounds, 885, 160936. https://doi.org/10.1016/j.jallcom.2021.160936

    Article  CAS  Google Scholar 

  30. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams, Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., & Fox, D.J. (2016). Gaussian 16 Rev. C.01, in, Wallingford, CT.

  31. Shkir, M., Muhammad, S., AlFaify, S., Irfan, A., Patil, P. S., Arora, M., Algarni, H., & Jingping, Z. (2015). An investigation on the key features of a D–π–A type novel chalcone derivative for opto-electronic applications. RSC Advances, 5, 87320–87332. https://doi.org/10.1039/C5RA13494C

    Article  CAS  Google Scholar 

  32. Özcan, E., Tümay, S. O., Keşan, G., Yeşilot, S., & Çoşut, B. (2019). The novel anthracene decorated dendrimeric cyclophosphazenes for highly selective sensing of 2,4,6-trinitrotoluene (TNT). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 220, 117115. https://doi.org/10.1016/j.saa.2019.05.020

    Article  CAS  PubMed  Google Scholar 

  33. Uslu, A., Özcan, E., Tümay, S. O., Kazan, H. H., & Yeşilot, S. (2020). Development of a synthetic strategy for Water soluble tripodal receptors: Two novel fluorescent receptors for highly selective and sensitive detections of Fe3+ and Cu2+ ions and biological evaluation. Journal of Photochemistry and Photobiology A: Chemistry, 392, 112411. https://doi.org/10.1016/j.jphotochem.2020.112411

    Article  CAS  Google Scholar 

  34. Mondal, K., Bhattacharyya, S., & Sharma, A. (2014). Photocatalytic degradation of naphthalene by electrospun mesoporous carbon-doped anatase TiO2 nanofiber mats. Industrial & Engineering Chemistry Research, 53, 18900–18909. https://doi.org/10.1021/ie5025744

    Article  CAS  Google Scholar 

  35. Tümay, S. O., & Yeşilot, S. (2019). Tripodal synthetic receptors based on cyclotriphosphazene scaffold for highly selective and sensitive spectrofluorimetric determination of iron(III) in water samples. Journal of Photochemistry and Photobiology A: Chemistry, 372, 156–167. https://doi.org/10.1016/j.jphotochem.2018.12.012

    Article  CAS  Google Scholar 

  36. Tümay, S. O. (2021). Tripodal structured blue-green emissive fluorescent sensors for highly selective bifunctional detection: Their logic gate operations and real sample applications. Journal of Luminescence, 231, 117813. https://doi.org/10.1016/j.jlumin.2020.117813

    Article  CAS  Google Scholar 

  37. Zhang, Q., Zhang, D., Lu, Y., Yao, Y., Li, S., & Liu, Q. (2015). Graphene oxide-based optical biosensor functionalized with peptides for explosive detection. Biosensors and Bioelectronics, 68, 494–499. https://doi.org/10.1016/j.bios.2015.01.040

    Article  CAS  PubMed  Google Scholar 

  38. Carrillo-Carrión, C., Simonet, B. M., & Valcárcel, M. (2013). Determination of TNT explosive based on its selectively interaction with creatinine-capped CdSe/ZnS quantum dots. Analytica Chimica Acta, 792, 93–100. https://doi.org/10.1016/j.aca.2013.07.004

    Article  CAS  PubMed  Google Scholar 

  39. Goodpaster, J. V., & McGuffin, V. L. (2001). Fluorescence quenching as an indirect detection method for nitrated explosives. Analytical Chemistry, 73, 2004–2011. https://doi.org/10.1021/ac001347n

    Article  CAS  PubMed  Google Scholar 

  40. Sanchez, J. C., DiPasquale, A. G., Rheingold, A. L., & Trogler, W. C. (2007). Synthesis, luminescence properties, and explosives sensing with 1,1-tetraphenylsilole- and 1,1-silafluorene-vinylene polymers. Chemistry of Materials, 19, 6459–6470. https://doi.org/10.1021/cm702299g

    Article  CAS  Google Scholar 

  41. Khasanov, A. F., Kopchuk, D. S., Kovalev, I. S., Taniya, O. S., Giri, K., Slepukhin, P. A., Santra, S., Rahman, M., Majee, A., Charushin, V. N., & Chupakhin, O. N. (2017). Extended cavity pyrene-based iptycenes for the turn-off fluorescence detection of RDX and common nitroaromatic explosives. New Journal of Chemistry, 41, 2309–2320. https://doi.org/10.1039/C6NJ02956F

    Article  CAS  Google Scholar 

  42. Fan, L., Hu, Y., Wang, X., Zhang, L., Li, F., Han, D., Li, Z., Zhang, Q., Wang, Z., & Niu, L. (2012). Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT. Talanta, 101, 192–197. https://doi.org/10.1016/j.talanta.2012.08.048

    Article  CAS  PubMed  Google Scholar 

  43. Kumar, V., Maiti, B., Chini, M. K., De, P., & Satapathi, S. (2019). Multimodal fluorescent polymer sensor for highly sensitive detection of nitroaromatics. Scientific Reports, 9, 7269. https://doi.org/10.1038/s41598-019-43836-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stringer, R. C., Gangopadhyay, S., & Grant, S. A. (2010). Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer. Analytical Chemistry, 82, 4015–4019. https://doi.org/10.1021/ac902838c

    Article  CAS  PubMed  Google Scholar 

  45. Tanwar, A. S., Parui, R., Garai, R., Chanu, M. A., & Iyer, P. K. (2022). Dual “static and dynamic” fluorescence quenching mechanisms based detection of TNT via a cationic conjugated polymer. ACS Measurement Science Au, 2, 23–30. https://doi.org/10.1021/acsmeasuresciau.1c00023

    Article  CAS  PubMed  Google Scholar 

  46. Lakowicz, J. R. (2013). Principles of fluorescence spectroscopy. Springer Science & Business Media.

    Google Scholar 

  47. Kumar, V., Saini, S. K., Choudhury, N., Kumar, A., Maiti, B., De, P., Kumar, M., & Satapathi, S. (2021). Highly sensitive detection of nitro compounds using a fluorescent copolymer-based FRET system. ACS Applied Polymer Materials, 3, 4017–4026. https://doi.org/10.1021/acsapm.1c00540

    Article  CAS  Google Scholar 

  48. Liu, R., Farinha, J. P. S., & Winnik, M. A. (1999). Preparation and spectroscopic properties of phenanthrene-labeled SEBS triblock copolymers. Macromolecules, 32, 3957–3963. https://doi.org/10.1021/ma990268e

    Article  CAS  Google Scholar 

  49. Lee, S., & Winnik, M. A. (1994). Photophysical behavior of oligoethylene glycols labeled with naphthalene carboxylate and phosphate esters. Canadian Journal of Chemistry, 72, 1587–1595. https://doi.org/10.1139/v94-198

    Article  CAS  Google Scholar 

  50. Sahu, S., Sikdar, Y., Bag, R., Cerezo, J., Cerón-Carrasco, J. P., & Goswami, S. (2022). Turn on fluorescence sensing of Zn2+ based on fused isoindole-imidazole scaffold. Molecules, 27, 2859. https://doi.org/10.3390/molecules27092859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tang, Y., Huang, H., Peng, B., Chang, Y., Li, Y., & Zhong, C. (2020). A thiadiazole-based covalent triazine framework nanosheet for highly selective and sensitive primary aromatic amine detection among various amines. Journal of Materials Chemistry A, 8, 16542–16550. https://doi.org/10.1039/C9TA14252E

    Article  CAS  Google Scholar 

  52. Zhu, X., Wang, Z., & Wu, Z. (2011). Characterization of membrane foulants in a full-scale membrane bioreactor for supermarket wastewater treatment. Process Biochemistry, 46, 1001–1009. https://doi.org/10.1016/j.procbio.2011.01.020

    Article  CAS  Google Scholar 

  53. Mobed, J. J., Hemmingsen, S. L., Autry, J. L., & McGown, L. B. (1996). Fluorescence characterization of IHSS humic substances: Total luminescence spectra with absorbance correction. Environmental Science & Technology, 30, 3061–3065. https://doi.org/10.1021/es960132l

    Article  CAS  Google Scholar 

  54. Caron, T., Pasquinet, E., van der Lee, A., Pansu, R. B., Rouessac, V., Clavaguera, S., Bouhadid, M., Serein-Spirau, F., Lère-Porte, J.-P., & Montméat, P. (2014). Efficient sensing of explosives by using fluorescent nonporous films of oligophenyleneethynylene derivatives thanks to optimal structure orientation and exciton migration. Chemistry A European Journal, 20, 15069–15076. https://doi.org/10.1002/chem.201402271

    Article  CAS  PubMed  Google Scholar 

  55. Demirel, G. B., Daglar, B., & Bayindir, M. (2013). Extremely fast and highly selective detection of nitroaromatic explosive vapours using fluorescent polymer thin films. Chemical Communications, 49, 6140–6142. https://doi.org/10.1039/C3CC43202E

    Article  CAS  PubMed  Google Scholar 

  56. He, G., Yan, N., Yang, J., Wang, H., Ding, L., Yin, S., & Fang, Y. (2011). Pyrene-containing conjugated polymer-based fluorescent films for highly sensitive and selective sensing of TNT in aqueous medium. Macromolecules, 44, 4759–4766. https://doi.org/10.1021/ma200953s

    Article  CAS  Google Scholar 

  57. Balan, B., Vijayakumar, C., Tsuji, M., Saeki, A., & Seki, S. (2012). Detection and distinction of DNT and TNT with a fluorescent conjugated polymer using the microwave conductivity technique. The Journal of Physical Chemistry B, 116, 10371–10378. https://doi.org/10.1021/jp304791r

    Article  CAS  PubMed  Google Scholar 

  58. Wang, E., Sun, D., Li, H., Sun, X., Liu, J., Ren, Z., & Yan, S. (2016). High efficiency organosilicon-containing polymer sensors for the detection of trinitrotoluene and dinitrotoluene. Journal of Materials Chemistry C, 4, 6756–6760. https://doi.org/10.1039/C6TC01892K

    Article  CAS  Google Scholar 

  59. Lee, I., Kwon, J. E., You, C., Kang, Y., & Kim, B.-G. (2019). Instantaneous detection of explosive and toxic nitroaromatic compounds via donor–acceptor complexation. Journal of Materials Chemistry C, 7, 9257–9262. https://doi.org/10.1039/C9TC02401H

    Article  CAS  Google Scholar 

  60. Vovusha, H., & Sanyal, B. (2015). DFT and TD-DFT studies on the electronic and optical properties of explosive molecules adsorbed on boron nitride and graphene nano flakes. RSC Advances, 5, 4599–4608. https://doi.org/10.1039/C4RA11314D

    Article  CAS  Google Scholar 

  61. Yeşilot, S., Çoşut, B., Alidağı, H. A., Hacıvelioğlu, F., Özpınar, G. A., & Kılıç, A. (2014). Intramolecular excimer formation in hexakis(pyrenyloxy)cyclotriphosphazene: Photophysical properties, crystal structure, and theoretical investigation. Dalton Transactions, 43, 3428–3433. https://doi.org/10.1039/C3DT52957F

    Article  PubMed  Google Scholar 

  62. Alidağı, H. A., Tümay, S. O., Şenocak, A., & Yeşilot, S. (2018). Pyrene functionalized cyclotriphosphazene-based dyes: Synthesis, intramolecular excimer formation, and fluorescence receptor for the detection of nitro-aromatic compounds. Dyes and Pigments, 153, 172–181. https://doi.org/10.1016/j.dyepig.2018.02.012

    Article  CAS  Google Scholar 

  63. Dong, J., Zhang, K., Li, X., Qian, Y., Zhu, H., Yuan, D., Xu, Q.-H., Jiang, J., & Zhao, D. (2017). Ultrathin two-dimensional porous organic nanosheets with molecular rotors for chemical sensing. Nature Communications, 8, 1142. https://doi.org/10.1038/s41467-017-01293-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Üngördü, A., & Tezer, N. (2017). The solvent (water) and metal effects on HOMO-LUMO gaps of guanine base pair: A computational study. Journal of Molecular Graphics and Modelling, 74, 265–272. https://doi.org/10.1016/j.jmgm.2017.04.015

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, H., Feng, L., Liu, B., Tong, C., & Lü, C. (2014). Conjugation of PPV functionalized mesoporous silica nanoparticles with graphene oxide for facile and sensitive fluorescence detection of TNT in water through FRET. Dyes and Pigments, 101, 122–129. https://doi.org/10.1016/j.dyepig.2013.09.040

    Article  CAS  Google Scholar 

  66. Chou, K. F., & Dennis, A. M. (2015). Förster resonance energy transfer between quantum dot donors and quantum dot acceptors. Sensors, 15, 13288–13325. https://doi.org/10.3390/s150613288

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cha, I., Baek, S., Song, S. G., Kim, J., Lee, H. K., Lee, J., Kim, K.-S., & Song, C. (2021). Inter- and intra-hydrogen bonding strategy to control the fluorescence of acylhydrazone-based conjugated microporous polymers and their application to nitroaromatics detection. Macromol, 1, 234–242. https://doi.org/10.3390/macromol1030016

    Article  CAS  Google Scholar 

  68. Hu, M.-L., Joharian, M., Razavi, S. A. A., Morsali, A., Wu, D.-Z., Azhdari Tehrani, A., Wang, J., Junk, P. C., & Guo, Z.-F. (2021). Phenolic nitroaromatics detection by fluorinated metal-organic frameworks: Barrier elimination for selective sensing of specific group of nitroaromatics. Journal of Hazardous Materials, 406, 124501. https://doi.org/10.1016/j.jhazmat.2020.124501

    Article  CAS  PubMed  Google Scholar 

  69. Venkatramaiah, N., Firmino, A. D. G., Almeida Paz, F. A., & Tomé, J. P. C. (2014). Fast detection of nitroaromatics using phosphonate pyrene motifs as dual chemosensors. Chemical Communications, 50, 9683–9686. https://doi.org/10.1039/C4CC03980G

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SOT: data curation, conceptualization, methodology, investigation, validation, formal analysis, visualization, writing—original draft, writing—review and editing. AŞ: investigation, visualization, writing—review and editing. BC: investigation, writing—review and editing. HAA: writing—review and editing. SY: supervision, conceptualization, writing—review and editing.

Corresponding author

Correspondence to Serkan Yeşilot.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1785 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tümay, S.O., Şenocak, A., Çoşut, B. et al. A water-soluble small molecular fluorescent sensor based on phosphazene platform for selective detection of nitroaromatic compounds. Photochem Photobiol Sci 22, 1429–1444 (2023). https://doi.org/10.1007/s43630-023-00388-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00388-3

Navigation