Skip to main content
Log in

Hazardous 2,4,6-Trinitrophenol (TNP) Detection in Water by Amine and Azine Functionalized Metal–Organic Framework

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A Zn(II)-based metal–organic framework (MOF) decorated with amine and azine functionalities, TMU-17-NH2 (formulated as [Zn(H2ata)(L)].2DMF; L = 1,4-bis(4-pyridyl)-2,3-diaza-2,3-butadiene and H2ata = 2-aminoterephthalic acid) has been successfully synthesized via a solvothermal method. According to crystallographic studies, the synthesized TMU-17-NH2 has three dimensional cuboidal structure with the pore surface decorated with free amine (-NH2) and azine (= N–N =) functional groups. The photoluminescence investigations proved that the synthesized MOF can be effectively utilized for selective detection of 2,4,6-trinitrophenol (TNP) in water with an apparent turn-off quenching response. Its limits of detection (LOD) for TNP was 9.4 ppb and competitive nitro explosive testing confirmed its higher selectivity towards TNP (over other nitro explosives). Calculations based on density functional theory (DFT) and spectrum overlap were utilized to evaluate the sensing mechanisms. This MOF-based fluorescence sensing technique for TNP had a high sensitivity (Ksv = 3.26 × 104 M−1).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Chen D-M, Zhang N-N, Liu C-S, Du M (2017) Dual-emitting Dye@ MOF composite as a self-calibrating sensor for 2, 4, 6-trinitrophenol. ACS Appl Mater Interfaces 9:24671–24677

    Article  CAS  PubMed  Google Scholar 

  2. Shyamal M, Das D, Giri P, Maity S, Misra A (2019) Aggregation-induced emission–based highly selective ‘turn-off’fluorogenic chemosensor for robust quantification of explosive picric acid in aqueous and solid states. Mater Today Chem 14:100193

    Article  CAS  Google Scholar 

  3. Dalapati R, Biswas S (2017) Post-synthetic modification of a metal-organic framework with fluorescent-tag for dual naked-eye sensing in aqueous medium. Sens Actuators B Chem 239:759–767

    Article  CAS  Google Scholar 

  4. Sharma M, Sharma G, Kaushal S, Badru R (2023) Eu-Gd@ BiPO4 nano-composite: a potential heterogeneous catalyst in Biginelli reaction. J Mol Liq 384:122218

    Article  CAS  Google Scholar 

  5. Singh P, Kaur N, Khunger A, Kaur G, Kumar S, Kaushik A, Chaudhary GR (2022) Green-monodispersed Pd-nanoparticles for improved mitigation of pathogens and environmental pollutant. Mater Today Commun 30:103106

    Article  CAS  Google Scholar 

  6. Rahimi-Nasrabadi M, Zahedi MM, Pourmortazavi SM, Heydari R, Rai H, Jazayeri J, Javidan A (2012) Simultaneous determination of carbazole-based explosives in environmental waters by dispersive liquid—liquid microextraction coupled to HPLC with UV-Vis detection. Microchim Acta 177:145–152

    Article  CAS  Google Scholar 

  7. Yan F, He Y, Ding L, Su B (2015) Highly ordered binary assembly of silica mesochannels and surfactant micelles for extraction and electrochemical analysis of trace nitroaromatic explosives and pesticides. Anal Chem 87:4436–4441

    Article  CAS  PubMed  Google Scholar 

  8. Guerra-Diaz P, Gura S, Almirall JR (2010) Dynamic planar solid phase microextraction− ion mobility spectrometry for rapid field air sampling and analysis of illicit drugs and explosives. Anal Chem 82:2826–2835

    Article  CAS  PubMed  Google Scholar 

  9. Wang W, Li H, Yin M, Wang K, Deng Q, Wang S, Zhang Y (2018) Highly selective and sensitive sensing of 2, 4, 6-trinitrophenol in beverages based on guanidine functionalized upconversion fluorescent nanoparticles. Sens Actuators B Chem 255:1422–1429

    Article  CAS  Google Scholar 

  10. Siddique AB, Pramanick AK, Chatterjee S, Ray M (2018) Amorphous carbon dots and their remarkable ability to detect 2, 4, 6-trinitrophenol. Sci Rep 8:1–10

    Article  Google Scholar 

  11. Jiang S, Meng L, Ma W, Qi Q, Zhang W, Xu B, Liu L, Tian W (2021) Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection. Chin Chem Lett 32:1037–1040

    Article  CAS  Google Scholar 

  12. Mehta P, Kaith BS (2021) Green synthesis of agar/gelatin based superabsorbent (BGCP) through gamma radiation cross-linking polymerization for castoff as sustained drug delivery device and in soil treatment for improved water retention. J Polym Environ 29:647–661

    Article  CAS  Google Scholar 

  13. Rong M, Lin L, Song X, Zhao T, Zhong Y, Yan J, Wang Y, Chen X (2015) A label-free fluorescence sensing approach for selective and sensitive detection of 2, 4, 6-trinitrophenol (TNP) in aqueous solution using graphitic carbon nitride nanosheets. Anal Chem 87:1288–1296

    Article  CAS  PubMed  Google Scholar 

  14. Mehta P, Sharma M, Devi M (2023) Hydrogels: an overview of its classifications, properties, and applications. J Mech Behav Biomed Mater 147:106145. https://doi.org/10.1016/j.jmbbm.2023.106145. ISSN 1751-6161

    Article  CAS  PubMed  Google Scholar 

  15. Zhu M-W, Xu S-Q, Wang X-Z, Chen Y, Dai L, Zhao X (2018) The construction of fluorescent heteropore covalent organic frameworks and their applications in spectroscopic and visual detection of trinitrophenol with high selectivity and sensitivity. Chem Commun 54:2308–2311

    Article  CAS  Google Scholar 

  16. Kaur M, Kumar S, Yusuf M, Lee J, Brown RJ, Kim K-H, Malik AK (2021a) Post-synthetic modification of luminescent metal-organic frameworks using schiff base complexes for biological and chemical sensing. Coord Chem Rev 449:214214

    Article  CAS  Google Scholar 

  17. Kaur M, Yusuf M, Tsang YF, Kim K-H, Malik AK (2023) Amine/hydrazone functionalized Cd (II)/Zn (II) metal-organic framework for ultrafast sensitive detection of hazardous 2, 4, 6-trinitrophenol in water. Sci Total Environ 857:159385

    Article  CAS  PubMed  Google Scholar 

  18. Nangare SN, Patil AG, Chandankar SM, Patil PO (2023) Nanostructured metal–organic framework-based luminescent sensor for chemical sensing: current challenges and future prospects. J Nanostruct Chem 13(2):197–242

    Article  CAS  Google Scholar 

  19. Halder S, Ghosh P, Hazra A, Banerjee P, Roy P (2018) A quinoline-based compound for explosive 2, 4, 6-trinitrophenol sensing: experimental and DFT-D3 studies. New J Chem 42:8408–8414

    Article  CAS  Google Scholar 

  20. Farahani YD, Safarifard V (2019a) Highly selective detection of Fe3+, Cd2+ and CH2Cl2 based on a fluorescent Zn-MOF with azine-decorated pores. J Solid State Chem 275:131–140

    Article  CAS  Google Scholar 

  21. Farahani YD, Safarifard V (2019b) A luminescent metal-organic framework with pre-designed functionalized ligands as an efficient fluorescence sensing for Fe3+ ions. J Solid State Chem 270:428–435

    Article  CAS  Google Scholar 

  22. Parmar B, Rachuri Y, Bisht KK, Laiya R, Suresh E (2017) Mechanochemical and conventional synthesis of Zn (II)/Cd (II) luminescent coordination polymers: dual sensing probe for selective detection of chromate anions and TNP in aqueous phase. Inorg Chem 56:2627–2638

    Article  CAS  PubMed  Google Scholar 

  23. Parmar B, Rachuri Y, Bisht KK, Suresh E (2016) Syntheses and structural analyses of new 3D isostructural Zn (II) and Cd (II) luminescent MOFs and their application towards detection of nitroaromatics in aqueous media. ChemistrySelect 1:6308–6315

    Article  CAS  Google Scholar 

  24. Rachuri Y, Subhagan S, Parmar B, Bisht KK, Suresh E (2018) Selective and reversible adsorption of cationic dyes by mixed ligand Zn (II) coordination polymers synthesized by reactant ratio modulation. Dalton Trans 47:898–908

    Article  CAS  PubMed  Google Scholar 

  25. Pal A, Chand S, Das MC (2017) A water-stable twofold interpenetrating microporous MOF for selective CO2 adsorption and separation. Inorg Chem 56:13991–13997

    Article  CAS  PubMed  Google Scholar 

  26. Yadollahi M, Hamadi H, Nobakht V (2020) Capture of iodine in solution and vapor phases by newly synthesized and characterized encapsulated Cu2O nanoparticles into the TMU-17-NH2 MOF. J Hazard Mater 399:122872

    Article  CAS  PubMed  Google Scholar 

  27. Ilyas Q, Waseem MT, Junaid HM, Khan ZA, Munir F, Shaikh AJ, Shahzad SA (2022) Fluorescein based fluorescent and colorimetric sensors for sensitive detection of TNP explosive in aqueous medium: application of logic gate. Spectrochim Acta Part A Mol Biomol Spectrosc 272:120994

    Article  CAS  Google Scholar 

  28. Das P, Mandal SK (2018) Strategic design and functionalization of an amine-decorated luminescent metal organic framework for selective gas/vapor sorption and nanomolar sensing of 2, 4, 6-trinitrophenol in water. ACS Appl Mater Interfaces 10:25360–25371

    Article  CAS  PubMed  Google Scholar 

  29. Kaur M, Yusuf M, Malik AK (2021b) Synthesis of copper metal organic framework based on Schiff base tricarboxylate ligand for highly selective and sensitive detection of 2, 4, 6-trinitrophenol in aqueous medium. J Fluoresc 31:1959–1973

    Article  CAS  PubMed  Google Scholar 

  30. Verma R, Dhingra G, Kaur M, Garg D, Mohiuddin I, Malik AK (2023) Amine-decorated zirconium based metal organic framework for ultrafast detection of 2,4,6-trinitrophenol in aqueous medium samples. J Fluoresc 33(5):2085–2098. https://doi.org/10.1007/s10895-023-03216-0. PMID: 36988780

    Article  CAS  PubMed  Google Scholar 

  31. Wang J-X, Yin J, Shekhah O, Bakr OM, Eddaoudi M, Mohammed OF (2022) Energy transfer in metal–organic frameworks for fluorescence sensing. ACS Appl Mater Interfaces 14:9970–9986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Govindasamy P, Gunasekaran S, Srinivasan S (2014) Molecular geometry, conformational, vibrational spectroscopic, molecular orbital and Mulliken charge analysis of 2-acetoxybenzoic acid. Spectrochim Acta Part A Mol Biomol Spectrosc 130:329–336

    Article  CAS  Google Scholar 

  33. Nagarkar SS, Desai AV, Samanta P, Ghosh SK (2015) Aqueous phase selective detection of 2, 4, 6-trinitrophenol using a fluorescent metal–organic framework with a pendant recognition site. Dalton Trans 44:15175–15180

    Article  CAS  PubMed  Google Scholar 

  34. Joarder B, Desai AV, Samanta P, Mukherjee S, Ghosh SK (2015) Selective and sensitive aqueous-phase detection of 2, 4, 6-trinitrophenol (TNP) by an amine-functionalized metal–organic framework. Chem Eur J 21(3):965–969

    Article  CAS  PubMed  Google Scholar 

  35. Verma R, Dhingra G, Kaur M, Garg D, Mohiuddin I, Malik AK (2023b) Amine-decorated zirconium based metal organic framework for ultrafast detection of 2, 4, 6-trinitrophenol in aqueous samples. J Fluoresc 33:2085–2098

    Article  CAS  PubMed  Google Scholar 

  36. Bagheri M, Masoomi MY, Morsali A, Schoedel A (2016) Two dimensional host–guest metal–organic framework sensor with high selectivity and sensitivity to picric acid. ACS Appl Mater Interfaces 8:21472–21479

    Article  CAS  PubMed  Google Scholar 

  37. Hong X-J, Wei Q, Cai Y-P, Zheng S-R, Yu Y, Fan Y-Z, Xu X-Y, Si L-P (2017) 2-fold interpenetrating bifunctional Cd-metal–organic frameworks: highly selective adsorption for CO2 and sensitive luminescent sensing of nitro aromatic 2, 4, 6-trinitrophenol. ACS Appl Mater Interfaces 9:4701–4708

    Article  CAS  PubMed  Google Scholar 

  38. Zhang F, Wang Y, Chu T, Wang Z, Li W, Yang Y (2016) A facile fabrication of electrodeposited luminescent MOF thin films for selective and recyclable sensing of nitroaromatic explosives. Analyst 141:4502–4510

    Article  CAS  PubMed  Google Scholar 

  39. Rachuri Y, Parmar B, Bisht KK, Suresh E (2016) Mixed ligand two dimensional Cd (II)/Ni (II) metal organic frameworks containing dicarboxylate and tripodal N-donor ligands: Cd (II) MOF is an efficient luminescent sensor for detection of picric acid in aqueous media. Dalton Trans 45:7881–7892

    Article  CAS  PubMed  Google Scholar 

  40. Zhou E-L, Huang P, Qin C, Shao K-Z, Su Z-M (2015) A stable luminescent anionic porous metal–organic framework for moderate adsorption of CO 2 and selective detection of nitro explosives. J Mater Chem A 3:7224–7228

    Article  CAS  Google Scholar 

  41. Mukherjee S, Desai AV, Manna B, Inamdar AI, Ghosh SK (2015) Exploitation of guest accessible aliphatic amine functionality of a metal–organic framework for selective detection of 2, 4, 6-trinitrophenol (TNP) in water. Cryst Growth Des 15:4627–4634

    Article  CAS  Google Scholar 

  42. Song XZ, Song SY, Zhao SN, Hao ZM, Zhu M, Meng X, Wu LL, Zhang HJ (2014) Single-Crystal-to-Single-Crystal transformation of a europium (III) metal–organic framework producing a multi-responsive luminescent sensor. Adv Func Mater 24:4034–4041

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Chemistry Department, Punjabi University, Patiala, for providing the laboratory and instrument facilities. Manpreet Kaur is also grateful for the UGC-SRF fellowship, UGC, New Delhi, India.

Funding

No funding available to support this work.

Author information

Authors and Affiliations

Authors

Contributions

Manpreet Kaur has performed the experiment and written the paper. Ashok Kumar Malik has supervised and reviewed the whole work.

Corresponding author

Correspondence to Ashok Kumar Malik.

Ethics declarations

Ethical Approval

There is no ethical approval required.

Consent to Participate

All authors give consent to participate in the revision of the manuscript.

Consent to Publish

All authors give consent to publish the paper.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• TMU-17-NH2 sensor decorated with amine and azine functionalities was synthesized.

• TMU-17-NH2 identified the TNP in water via turn-off quenching response.

• Turn-off response was explained both experimentally and theoretically.

• LOD of TMU-17-NH2 for TNP sensing was 9.4 ppb.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 163 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Malik, A.K. Hazardous 2,4,6-Trinitrophenol (TNP) Detection in Water by Amine and Azine Functionalized Metal–Organic Framework. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03751-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03751-4

Keywords

Navigation