Skip to main content
Log in

Effect of pH on the secondary structure and thermostability of beetle luciferases: structural origin of pH-insensitivity

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Beetle luciferases were classified into three functional groups: (1) pH-sensitive yellow–green-emitting (fireflies) which change the bioluminescence color to red at acidic pH, high temperatures and presence of heavy metals; (2) the pH-insensitive green–yellow-emitting (click beetles, railroad worms and firefly isozymes) which are not affected by these factors, and (3) pH-insensitive red-emitting. Although the pH-sensing site in firefly luciferases was recently identified, it is unclear why some luciferases are pH-insensitive despite the presence of some conserved pH-sensing residues. Through circular dichroism, we compared the secondary structural changes and unfolding temperature of luciferases of representatives of these three groups: (1) pH-sensitive green–yellow-emitting Macrolampis sp2 (Mac) and Amydetes vivianii (Amy) firefly luciferases; (2) the pH-insensitive green-emitting Pyrearinus termitilluminans larval click beetle (Pte) and Aspisoma lineatum (Al2) larval firefly luciferases, and (3) the pH-insensitive red-emitting Phrixotrix hirtus railroadworm (PxRE) luciferase. The most blue-shifted luciferases, independently of pH sensitivity, are thermally more stable at different pHs than the red-shifted ones. The pH-sensitive luciferases undergo increases of α-helices and thermal stability above pH 6. The pH-insensitive Pte luciferase secondary structure remains stable between pH 6 and 8, whereas the Al2 luciferase displays an increase of the β-sheet at pH 8. The PxRE luciferase also displays an increase of α-helices at pH 8. The results indicate that green–yellow emission in beetle luciferases can be attained by: (1) a structurally rigid scaffold which stabilizes a single closed active site conformation in the pH-insensitive luciferases, and (2) active site compaction above pH 7.0 in the more flexible pH-sensitive luciferases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wood, K. V. (1995). The chemical mechanism and evolutionary development of beetle bioluminescence. Photochemistry and Photobiology, 62, 662–673. https://doi.org/10.1111/j.1751-1097.1995.tb08714.x

    Article  CAS  Google Scholar 

  2. Viviani, V. R. (2002). The origin, diversity, and structure function relationships of insect luciferases. Cellular and molecular life sciences : CMLS. https://doi.org/10.1007/pl00012509

    Article  PubMed  Google Scholar 

  3. Viviani, V. R., & Bechara, E. J. H. (1995). Bioluminescence of brazilian fireflies (Coleoptera: Lampyridae): Spectral distribution and pH effect on luciferase-elicited colors. comparison with elaterid and phengodid luciferases. Photochemistry and Photobiology, 62, 490–495. https://doi.org/10.1111/j.1751-1097.1995.tb02373.x

    Article  CAS  Google Scholar 

  4. Roda, A., Pasini, P., Mirasoli, M., Michelini, E., & Guardigli, M. (2004). Biotechnological applications of bioluminescence and chemiluminescence. Trends in biotechnology. https://doi.org/10.1016/j.tibtech.2004.03.011

    Article  PubMed  Google Scholar 

  5. Viviani, V. R. & Ohmiya, Y. (2006). in Photoproteins in Bioanalysis (eds S. Daunert & S.K. Deo) Ch. 3, 49–63 (John Wiley & Sons, Ltd).

  6. Gabriel, G. V., & Viviani, V. R. (2014). Novel application of pH-sensitive firefly luciferases as dual reporter genes for simultaneous ratiometric analysis of intracellular pH and gene expression/location. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology. https://doi.org/10.1039/c4pp00278d

    Article  Google Scholar 

  7. Gabriel, G. V. M., Yasuno, R., Mitani, Y., Ohmiya, Y., & Viviani, V. R. (2019). Novel application of Macrolampis sp2 firefly luciferase for intracellular pH-biosensing in mammalian cells. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology. https://doi.org/10.1039/c8pp00573g

    Article  Google Scholar 

  8. de Wet, J. R., Wood, K. V., Helinski, D. R., & DeLuca, M. (1985). Cloning of Firefly Luciferase cDNA and the Expression of Active Luciferase in Escherichia Coli. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.82.23.7870

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tatsumi, H., Masuda, T., Kajiyama, N., & Nakano, E. (1989). Luciferase cDNA from Japanese firefly, Luciola cruciata: Cloning, structure and expression in Escherichia coli. Journal of bioluminescence and chemiluminescence. https://doi.org/10.1002/bio.1170030208

    Article  PubMed  Google Scholar 

  10. Tatsumi, H., Kajiyama, N. & Nakano, E. (1992). Molecular Cloning and Expression in Escherichia Coli of a cDNA Clone Encoding Luciferase of a Firefly, Luciola Lateralis. Biochimica et biophysica acta. Doi: https://doi.org/10.1016/0167-4781(92)90071-7

  11. Devine, J. H., Kutuzova, G. D., Green, V. A., Ugarova, N. N., & Baldwin, T. O. (1993). Luciferase From the East European Firefly Luciola Mingrelica: Cloning and Nucleotide Sequence of the cDNA. Overexpression in Escherichia Coli and Purification of the Enzyme. https://doi.org/10.1016/0167-4781(93)90172-a

    Book  Google Scholar 

  12. Ohmiya Y, Ohba N, H Toh & FI Tsuji (1995) Cloning, Expression and Sequence Analysis of cDNA for the Luciferases From the Japanese Fireflies, Pyrocoelia Miyako and Hotaria Parvula. Photochemistry and photobiology. https://doi.org/10.1111/j.1751-1097.1995.tb05273.x

  13. Sala-Newby, G. B., Thomson, C. M., & Campbell, A. K. (1996). Sequence and biochemical similarities between the luciferases of the glow-worm Lampyris noctiluca and the firefly Photinus pyralis. The Biochemical journal. https://doi.org/10.1042/bj3130761

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ye, L., Buck, L. M., Schaeffer, H. J., & Leach, F. R. (1997). Cloning and sequencing of a cDNA for firefly luciferase from photuris pennsylvanica. Biochimica et Biophysica Acta. https://doi.org/10.1016/s0167-4838(96)00211-7

    Article  PubMed  Google Scholar 

  15. Viviani, V. R., et al. (1999). Cloning and molecular characterization of the cDNA for the Brazilian larval click-beetle Pyrearinus termitilluminans luciferase. Photochemistry and Photobiology. https://doi.org/10.1562/0031-8655(1999)0702.3.co;2

    Article  PubMed  Google Scholar 

  16. Viviani, V. R., Bechara, E. J., & Ohmiya, Y. (1999). Cloning, sequence analysis, and expression of active Phrixothrix railroad-worms luciferases: relationship between bioluminescence spectra and primary structures. Biochemistry. https://doi.org/10.1021/bi9900830

    Article  PubMed  Google Scholar 

  17. Viviani, V. R., Arnoldi, F. G., Brochetto-Braga, M., & Ohmiya, Y. (2004). Cloning and characterization of the cDNA for the Brazilian cratomorphus distinctus larval firefly luciferase: similarities with European lampyris noctiluca and asiatic pyrocoelia luciferases. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology. https://doi.org/10.1016/j.cbpc.2004.05.012

    Article  Google Scholar 

  18. Amaral, D. T., Prado, R. A., & Viviani, V. R. (2012). Luciferase from Fulgeochlizus bruchi (Coleoptera:Elateridae), a Brazilian click-beetle with a single abdominal lantern: molecular evolution, biological function and comparison with other click-beetle luciferases. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology. https://doi.org/10.1039/c2pp25037c

    Article  Google Scholar 

  19. Viviani, V. R., Oehlmeyer, T. L., Arnoldi, F. G., & Brochetto-Braga, M. R. A. (2005). New firefly luciferase with bimodal spectrum: identification of structural determinants of spectral pH-sensitivity in firefly luciferases. Photochemistry and Photobiology. https://doi.org/10.1562/2004-12-09-RA-398R.1

    Article  PubMed  Google Scholar 

  20. Alipour, B. S., et al. (2004). Molecular cloning, sequence analysis, and expression of a cDNA encoding the luciferase from the glow-worm, lampyris turkestanicus. Biochemical and Biophysical Research Communications. https://doi.org/10.1016/j.bbrc.2004.10.022

    Article  PubMed  Google Scholar 

  21. Viviani, V. R., Amaral, D., Prado, R., & Arnoldi, F. G. (2011). A new blue-shifted luciferase from the Brazilian Amydetes fanestratus (Coleoptera: Lampyridae) firefly: molecular evolution and structural/functional properties. Photochemical & Photobiological Sciences : Official Journal of the European Photochemistry Association and the European Society for Photobiology. https://doi.org/10.1039/c1pp05210a

    Article  Google Scholar 

  22. Conti, E., Franks, N. P., & Brick, P. (1996). Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure. https://doi.org/10.1016/s0969-2126(96)00033-0

    Article  PubMed  Google Scholar 

  23. Nakatsu, T., et al. (2006). Structural basis for the spectral difference in luciferase bioluminescence. Nature. https://doi.org/10.1038/nature04542

    Article  PubMed  Google Scholar 

  24. Sandalova, T. P., & Ugarova, N. N. (1999). Model of the active site of firefly luciferase. Biochemistry Biokhimiia, 64, 962–967.

    CAS  PubMed  Google Scholar 

  25. Branchini, B. R., Magyar, R. A., Murtiashaw, M. H., & Portier, N. C. (2001). The role of active site residue arginine 218 in firefly luciferase bioluminescence. Biochemistry. https://doi.org/10.1021/bi002246m

    Article  PubMed  Google Scholar 

  26. Branchini, B. R., Southworth, T. L., Murtiashaw, M. H., Boije, H., & Fleet, S. E. (2003). A mutagenesis study of the putative luciferin binding site residues of firefly luciferase. Biochemistry. https://doi.org/10.1021/bi030099x

    Article  PubMed  Google Scholar 

  27. Ugarova, N. N., & Brovko, L. Y. (2002). Protein structure and bioluminescent spectra for firefly bioluminescence. Luminescence : The Journal of Biological and Chemical Luminescence. https://doi.org/10.1002/bio.688

    Article  PubMed  Google Scholar 

  28. Franks, N. P., Jenkins, A., Conti, E., Lieb, W. R., & Brick, P. (1998). Structural basis for the inhibition of firefly luciferase by a general anesthetic. Biophysical Journal. https://doi.org/10.1016/S0006-3495(98)77664-7

    Article  PubMed  PubMed Central  Google Scholar 

  29. Branchini, B. R., Magyar, R. A., Murtiashaw, M. H., Anderson, S. M., & Zimmer, M. (1998). Site-directed mutagenesis of histidine 245 in firefly luciferase: a proposed model of the active site. Biochemistry. https://doi.org/10.1021/bi981150d

    Article  PubMed  Google Scholar 

  30. Kheirabadi, M., et al. (2013). Crystal structure of native and a mutant of lampyris turkestanicus luciferase implicate in bioluminescence color shift. Biochimica et Biophysica Acta. https://doi.org/10.1016/j.bbapap.2013.09.022

    Article  PubMed  Google Scholar 

  31. Carrasco-López, C., et al. (2018). Beetle luciferases with naturally red- and blue-shifted emission. Life Science Alliance. https://doi.org/10.26508/lsa.201800072

    Article  PubMed  PubMed Central  Google Scholar 

  32. DeLuca, M. (1969). Hydrophobic nature of the active site of firefly luciferase. Biochemistry. https://doi.org/10.1021/bi00829a023

    Article  PubMed  Google Scholar 

  33. White, E. H., Rapaport, E., Hopkins, T. A., & Seliger, H. H. (1969). Chemi- and bioluminescence of firefly luciferin. Journal of the American Chemical Society. https://doi.org/10.1021/ja01036a093

    Article  PubMed  Google Scholar 

  34. McCapra, F., Gilfoyle, D. J., Young, D. W., Church, N. J. & Spencer, P. (1996). in Bioluminescence and Chemiluminescence: Fundamentals and Applied Aspects (eds A.K. Campbell, L.J. Kricka, & P.E. Stanley) 387–391 (Journal of the American Chemical Society).

  35. Orlova, G., Goddard, J. D., & Brovko, L. Y. (2003). Theoretical study of the amazing firefly bioluminescence: the formation and structures of the light emitters. Journal of the American Chemical Society. https://doi.org/10.1021/ja021255a

    Article  PubMed  Google Scholar 

  36. Hirano, T., et al. (2009). Spectroscopic studies of the light-color modulation mechanism of firefly (beetle) bioluminescence. Journal of the American Chemical Society. https://doi.org/10.1021/ja808836b

    Article  PubMed  Google Scholar 

  37. Viviani, V. R., et al. (2014). Bioluminescence of beetle luciferases with 6’-amino-D-luciferin analogues reveals excited Keto-oxyluciferin as the emitter and phenolate/luciferin binding site interactions modulate bioluminescence colors. Biochemistry. https://doi.org/10.1021/bi500160m

    Article  PubMed  Google Scholar 

  38. Viviani, V. R., et al. (2016). Glu311 and Arg337 stabilize a closed active-site conformation and provide a critical catalytic base and countercation for green bioluminescence in beetle luciferases. Biochemistry. https://doi.org/10.1021/acs.biochem.6b00260

    Article  PubMed  Google Scholar 

  39. Viviani, V. R., et al. (2018). The proton and metal binding sites responsible for the pH-dependent green-red bioluminescence color tuning in firefly luciferases. Scientific Reports, 8, 1–14. https://doi.org/10.1038/s41598-018-33252-x

    Article  CAS  Google Scholar 

  40. Viviani, V. R., et al. (2008). The structural origin and biological function of pH-sensitivity in firefly luciferases. Photochemical & Photobiological Sciences : Official Journal of the European Photochemistry Association and the European Society for Photobiology. https://doi.org/10.1039/b714392c

    Article  Google Scholar 

  41. Sambrook, J. & Russell, D. W. (2001). Molecular cloning : a laboratory manual. 3 edn, (Cold Spring Harbor Laboratory Press).

  42. Whitmore, L., & Wallace, B. A. (2004). DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Research. https://doi.org/10.1093/nar/gkh371

    Article  PubMed  PubMed Central  Google Scholar 

  43. Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols. https://doi.org/10.1038/nprot.2010.5

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sánchez-Linares, I., Pérez-Sánchez, H., Cecilia, J. M., & García, J. M. (2012). High-throughput parallel blind virtual screening using BINDSURF. BMC Bioinformatics. https://doi.org/10.1186/1471-2105-13-S14-S13

    Article  PubMed  PubMed Central  Google Scholar 

  45. DeLano, W. L. (2008). The PyMOL Molecular Graphics System, <http://www.pymol.org>.

  46. Frishman, D., & Argos, P. (1995). Knowledge-based protein secondary structure assignment. Proteins. https://doi.org/10.1002/prot.340230412

    Article  PubMed  Google Scholar 

  47. Kelly, S. M. & Price, N. C. (1997). in Biochim Biophys Acta 1338: 161–185

  48. Sreerama, N. & Woody, R. W. (2000 ). in Anal Biochem 287:252–260 (Academic Press., 2000).

  49. Rodger, A. (2022). in Encyclopedia of Biophysics (ed Gordon C. K. Roberts) 726–730 (SpringerLink, Springer Berlin Heidelberg).

  50. Carvalho, M. C., Tomazini, A., Amaral, D. T., Murakami, M. T., & Viviani, V. R. (2020). Luciferase isozymes from the Brazilian Aspisoma lineatum (Lampyridae) firefly: origin of efficient pH-sensitive lantern luciferases from fat body pH-insensitive ancestors. Photochemical & Photobiological Sciences Official Journal of the European Photochemistry Association and the European Society for Photobiology. https://doi.org/10.1039/d0pp00272k

    Article  Google Scholar 

  51. Perticaroli, S., et al. (2013). Secondary structure and rigidity in model proteins. Soft Matter. https://doi.org/10.1039/c3sm50807b

    Article  PubMed  Google Scholar 

  52. Sobhani-Damavandifar, Z., Hosseinkhani, S., & Sajedi, R. H. (2016). Proposed ionic bond between Arg300 and Glu270 and Glu271 are not involved in inactivation of a mutant firefly luciferase (LRR). Enzyme and Microbial Technology. https://doi.org/10.1016/j.enzmictec.2016.01.012

    Article  PubMed  Google Scholar 

  53. Shakeria, R., Hosseinkhanib, S., & Ardestania, S. K. (2014). Poster Presentations P0062 Role of 270 and 271 residues on function of Lampyris turkestanicus luciferase. Luminescence. https://doi.org/10.1002/bio.2699_3

    Article  Google Scholar 

  54. Bevilaqua, V. R., et al. (2021). Influence of the C-terminal domain on the bioluminescence activity and color determination in green and red emitting beetle luciferases and luciferase-like enzyme. Photochemical & photobiological sciences : Official Journal of the European Photochemistry Association and the European Society for Photobiology. https://doi.org/10.1007/s43630-020-00007-5

    Article  Google Scholar 

  55. Pelentir, G. F., Bevilaqua, V. R., & Viviani, V. R. A. (2019). Highly efficient thermostable and cadmium selective firefly luciferase suitable for ratiometric metal and pH biosensing and for sensitive ATP assays. Photochemical & Photobiological Sciences Official Journal of the European Photochemistry Association and the European Society for Photobiology. https://doi.org/10.1039/c9pp00174c

    Article  Google Scholar 

Download references

Funding

Fundação de Amparo à Pesquisa do Estado de São Paulo, 2010/05426-8, Vadim R. Viviani, 2018/02538-1, Atílio Tomazini, Conselho Nacional de Desenvolvimento Científico e Tecnológico, 405060/2021-1, Vadim R. Viviani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim R. Viviani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomazini, A., Carvalho, M., Murakami, M.T. et al. Effect of pH on the secondary structure and thermostability of beetle luciferases: structural origin of pH-insensitivity. Photochem Photobiol Sci 22, 893–904 (2023). https://doi.org/10.1007/s43630-022-00360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00360-7

Keywords

Navigation