Skip to main content
Log in

Enhanced photodegradation of organic contaminants using V-ZnSQDs@TiO2 photocatalyst in an aqueous medium

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Vanadium-doped zinc sulfide quantum dots complexed with TiO2 have been designed using the sol–gel technique and characterized using analytical techniques, such as X-ray diffraction analysis (XRD), UV–Vis diffuse reflectance spectra (DRS), Fourier transforms Infra Red (FTIR), Brunauer–Emmett–Teller analysis (BET), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and transmission electron microscopy (TEM). The X-ray diffraction analysis of the composite material showed sharp peaks corresponding to both TiO2 and ZnSQDs. The FTIR analysis exhibits a strong and broad absorption at 807 cm−1 indicating the assimilation of vanadium metal in the ZnSQDs lattice. The DRS spectra showed a bathochromic shift of 25 nm in the synthesized V-ZnSQDs@TiO2 composite compared with the pure sample. The photocatalytic performance of the synthesized composite was tested by studying the degradation of two different chromophoric organic dyes, rhodamine B (RhB), methylene blue (MB) and a drug derivative paracetamol (PCM) in aqueous suspension under UV-light illumination. Among the synthesized materials, the composite (V-ZnSQDs@TiO2) was established to be more active than the pure ZnSQDs, TiO2, and V-ZnSQDs for the degradation of compounds under investigation. The activity of the synthesized catalyst was also tested for the mineralization of all compounds by measuring the depletion in total organic carbon (TOC) at different irradiation times. The results showed that the catalyst degrades the compounds and mineralizes them efficiently. The primary reactive species involved in the photodegradation reaction were determined by quenching studies, terephthalic acid, and NBT probe methods. A probable mechanistic pathway for the decomposition of compounds has been proposed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Data will be available on request.

References

  1. Chaguetmi, S., Mammeri, F., Nowak, S., Decorse, P., Lecoq, H., Gaceur, M., BenNaceur, J., Achour, S., Chtourou, R., & Ammar, S. (2013). Photocatalytic activity of TiO2 nanofibers sensitized with ZnS quantum dots. RSC Advances, 3, 2572–2580.

    Article  CAS  Google Scholar 

  2. Shamsipur, M., & Rajabi, H. R. (2014). Study of photocatalytic activity of ZnS quantum dots as efficient nanoparticles for removal of methyl violet: Effect of ferric ion doping. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 122, 260–267.

    Article  CAS  PubMed  Google Scholar 

  3. Khani, O., Rajabi, H. R., Yousefi, M. H., Khosravi, A. A., Jannesari, M., & Shamsipur, M. (2011). Synthesis and characterizations of ultra-small ZnS and Zn (1–x)FexS quantum dots in aqueous media and spectroscopic study of their interactions with bovine serum albumin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79, 361–369.

    Article  CAS  PubMed  Google Scholar 

  4. Pradeep, S., Raghuram, S., Chaudhury, M. G., & Mazumder, S. (2017). Synthesis and characterization of Fe3+ and Mn2+ doped ZnS quantum dots for photocatalytic applications: Effect of 2-mercaptoethanol and chitosan as capping agents. Journal of Nanoscience and Nanotechnology, 17, 1125–1132.

    Article  CAS  PubMed  Google Scholar 

  5. Ullah, R., & Dutta, J. (2008). Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. Journal of Hazardous Materials, 156, 194–200.

    Article  CAS  PubMed  Google Scholar 

  6. Ekwo, P. I., & Okeke, C. E. (1992). Thermoelectric properties of the PbSZnS alloy semiconductor and its application to solar energy conversion. Energy Conversion and Management, 33, 159–164.

    Article  CAS  Google Scholar 

  7. Al-Rasoul, K. T., Ibrahim, I. M., Ali, I. M., & Al-Haddad, R. M. (2014). Synthesis structure and characterization Of Zns Qds and using it in photocatalytic reaction. International Journal of Scientific & Technology Research, 3, 2777–8816.

    Google Scholar 

  8. Xu, C., Zhou, R., He, W., Wu, L., Wu, P., & Hou, X. (2014). Fast imaging of eccrine latent fingerprints with nontoxic Mn-Doped ZnS QDs. Analytical Chemistry, 86, 3279–3283.

    Article  CAS  PubMed  Google Scholar 

  9. Verma, N., Singh, A. K., & Saini, N. (2017). Synthesis and characterization of ZnS quantum dots and application for development of arginine biosensor. Sensing and Bio-Sensing Research, 15, 41–45.

    Article  Google Scholar 

  10. Yang, H., Huang, C., Su, X., & Tang, A. (2005). Microwave-assisted synthesis and luminescent properties of pure and doped ZnS nanoparticles. Journal of Alloys and Compounds, 402, 274–277.

    Article  CAS  Google Scholar 

  11. Li, Z. X., Xie, Y. L., Xu, H., Wang, T. M., Xu, Z. G., & Zhang, H. L. (2011). Expanding the photoresponse range of TiO2 nanotube arrays by CdS/CdSe/ZnS quantum dots co-modification. Journal of Photochemistry and Photobiology A: Chemistry, 224, 25–30.

    Article  CAS  Google Scholar 

  12. Labiadh, H., Ben Chaabane, T., Balan, L., Becheik, N., Corbel, S., Medjahdi, G., & Schneider, R. (2014). Preparation of Cu-doped ZnS QDs/TiO2 nanocomposites with high photocatalytic activity. Applied Catalysis B Environmental, 144, 29–35.

    Article  CAS  Google Scholar 

  13. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2010). Understanding TiO2 photocatalysis : mechanisms and materials. Chemical Reviews, 114, 9919–9986.

    Article  Google Scholar 

  14. Kobosko, S. M., Jara, D. H., & Kamat, P. V. (2017). AgInS2-ZnS quantum dots: Excited state interactions with TiO2 and photovoltaic performance. ACS Applied Materials and Interfaces, 9, 33379–33388.

    Article  CAS  PubMed  Google Scholar 

  15. Jang, J. S., Kim, H. G., & Lee, J. S. (2012). Heterojunction semiconductors: A strategy to develop efficient photocatalytic materials for visible light water splitting. Catalysis Today, 185, 270–277.

    Article  CAS  Google Scholar 

  16. Liu, X., Chen, N., Li, Y., Deng, D., Xing, X., & Wang, Y. (2016). A general nonaqueous sol-gel route to g-C3N4-coupling photocatalysts: The case of Z-scheme g-C3N4/TiO2 with enhanced photodegradation toward RhB under visible-light. Scientific Reports, 6, 39531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khan, A., Danish, M., Alam, U., Zafar, S., & Muneer, M. (2020). Facile synthesis of a Z-scheme ZnIn2S4/MoO3 heterojunction with enhanced photocatalytic activity under visible light irradiation. ACS Omega, 5, 8188–8199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Natarajan, T. S., Thomas, M., Natarajan, K., Bajaj, H. C., & Tayade, R. J. (2011). Study on UV-LED/TiO2 process for degradation of Rhodamine B dye. Chemical Engineering Journal, 169, 126–134.

    Article  CAS  Google Scholar 

  19. Caires, A. J., Mansur, A. A. P., Carvalho, I. C., Carvalho, S. M., & Mansur, H. S. (2020). Green synthesis of ZnS quantum dot/biopolymer photoluminescent nanoprobes for bioimaging brain cancer cells. Materials Chemistry and Physics, 244, 122716.

    Article  CAS  Google Scholar 

  20. Tsolekile, N., Parani, S., Vuyelwa, N., Maluleke, R., Matoetoe, M., Songca, S., & Oluwafemi, O. S. (2020). Synthesis, structural and fluorescence optimization of ternary Cu–In–S quantum dots passivated with ZnS. Journal of Luminescence, 227, 117541.

    Article  CAS  Google Scholar 

  21. Poornaprakash, B., Chalapathi, U., Suh, Y., Vattikuti, S. V. P., Reddy, M. S. P., & Park, S. H. (2018). Terbium-doped ZnS quantum dots: Structural, morphological, optical, photoluminescence, and photocatalytic properties. Ceramics International, 44, 11724–11729.

    Article  Google Scholar 

  22. Yuan, D., Sun, M., Tang, S., Zhang, Y., Wang, Z., Qi, J., Rao, Y., & Zhang, Q. (2020). All-solid-state BiVO4/ZnIn2S4 Z-scheme composite with efficient charge separations for improved visible light photocatalytic organics degradation. Chinese Chemical Letters, 31, 547–550.

    Article  CAS  Google Scholar 

  23. Alam, U., Fleisch, M., Kretschmer, I., Bahnemann, D., & Muneer, M. (2017). One-step hydrothermal synthesis of Bi-TiO2 nanotube/graphene composites: An efficient photocatalyst for spectacular degradation of organic pollutants under visible light irradiation. Applied Catalysis B Environmental, 218, 758–769.

    Article  CAS  Google Scholar 

  24. Laera, A. M., Mirenghi, L., Cassano, G., Capodieci, L., Ferrara, M. C., Mazzarelli, S., Schioppa, M., Dimaio, D., Rizzo, A., Penza, M., & Tapfer, L. (2020). Synthesis of nanocrystalline ZnS/TiO2 films for enhanced NO2 gas sensing. Thin Solid Films, 709, 138190.

    Article  CAS  Google Scholar 

  25. Sharma, R. K., Singh, M., Kumar, P., & Reddy, G. B. (2015). Oxidation of vanadium metal in oxygen plasma and their characterizations. AIP Advances, 9, 097172.

    Article  Google Scholar 

  26. Vaidya, S., Patra, A., & Ganguli, A. K. (2010). CdS@TiO2 and ZnS@TiO2 core-shell nanocomposites: Synthesis and optical properties. Colloids and Surfaces A Physicochemical and Engineering Aspects, 363, 130–134.

    Article  CAS  Google Scholar 

  27. Zhang, Y. (2016). VO2(B) conversion to VO2(A) and VO2(M) and their oxidation resistance and optical switching properties. Materials Science Poland, 34, 169–176.

    Article  CAS  Google Scholar 

  28. Ge, M., Guo, C., Zhu, X., Ma, L., Han, Z., Hu, W., & Wang, Y. (2009). Photocatalytic degradation of methyl orange using ZnO/TiO2 composites. Frontiers of Environmental Science and Engineering in China, 3, 271–280.

    Article  CAS  Google Scholar 

  29. Giannetta, H. M. R., Calaza, C., Fraigi, L., & Fonseca, L. (2017). Vanadium oxide thin films obtained by thermal annealing of layers deposited by rf magnetron sputtering at room temperature. Modern Technologies for Creating the Thin-film Systems and Coatings, 3, 67054.

    Google Scholar 

  30. Danish, M., Qamar, M., Suliman, M., & Muneer, M. (2020). Photoelectrochemical and photocatalytic properties of Fe@ZnSQDs/TiO2 nanocomposites for degradation of different chromophoric organic pollutants in aqueous suspension. Advanced Composites and Hybrid Materials, 3, 570–582.

    Article  CAS  Google Scholar 

  31. Athar, M. S., Danish, M., & Muneer, M. (2021). Fabrication of visible light-responsive dual Z-Scheme (α-Fe2O3/CdS/g-C3N4) ternary nanocomposites for enhanced photocatalytic performance and adsorption study in aqueous suspension. Journal of Environmental Chemical Engineering, 9, 105754.

    Article  CAS  Google Scholar 

  32. Alam, U., & Verma, N. (2021). Direct Z-scheme-based novel cobalt nickel tungstate/graphitic carbon nitride composite: Enhanced photocatalytic degradation of organic pollutants and oxidation of benzyl alcohol. Colloids and Surfaces A Physicochemical and Engineering Aspects, 630, 127606.

    Article  CAS  Google Scholar 

  33. Pascual-Gonzalez, C., Schileo, G., Murakami, S., Khesro, A., Wang, D., Reaney, I. M., & Feteira, A. (2017). Continuously controllable optical band gap in orthorhombic ferroelectric KNbO3-BiFeO3 ceramics. Applied Physics Letters, 110, 172902.

    Article  Google Scholar 

  34. Ahmad, I., Danish, M., Khan, A., & Muneer, M. (2022). One-pot hydrothermal synthesis of a double Z-scheme g-C3N4/AgI/β-AgVO3 ternary nanocomposite for efficient degradation of organic pollutants and DPC–Cr(VI) complex under visible-light irradiation. Photochemical and Photobiological Sciences, 1, 1–16.

    Google Scholar 

  35. Baruah, J. M., Kalita, S., & Narayan, J. (2019). Green chemistry synthesis of biocompatible ZnS quantum dots (QDs): Their application as potential thin films and antibacterial agent, International. Nano Letters, 9, 149–159.

    Article  CAS  Google Scholar 

  36. Beranek, R., & Kisch, H. (2008). Tuning the optical and photoelectrochemical properties of surface-modified TiO2. Photochemical & Photobiological Sciences, 7, 40–48.

    Article  CAS  Google Scholar 

  37. Alam, U., Khan, A., Raza, W., Khan, A., Bahnemann, D., & Muneer, M. (2017). Highly efficient Y and V co-doped ZnO photocatalyst with enhanced dye sensitized visible light photocatalytic activity. Catalysis Today, 284, 169–178.

    Article  CAS  Google Scholar 

  38. Suchorski, Y., Rihko-Struckmann, L., Klose, F., Ye, Y., Alandjiyska, M., Sundmacher, K., & Weiss, H. (2005). Evolution of oxidation states in vanadium-based catalysts under conventional XPS conditions. Applied Surface Science, 249, 231–237.

    Article  CAS  Google Scholar 

  39. Nguyen, T. P., Lam, Q. V., & Vu, T. B. (2018). Effects of precursor molar ratio and annealing temperature on structure and photoluminescence characteristics of Mn-doped ZnS quantum dots. Journal of Luminescence, 196, 359–367.

    Article  CAS  Google Scholar 

  40. Harlin, M. E., Niemi, V. M., & Krause, A. O. I. (2000). Alumina-supported vanadium oxide in the dehydrogenation of butanes. Journal of Catalysis, 195, 67–78.

    Article  CAS  Google Scholar 

  41. Gupta, S., Choubey, R. K., Sharma, L. K., Ghosh, M. P., Kar, M., & Mukherjee, S. (2019). Exploring the magnetic ground state of vanadium doped zinc sulphide. Semiconductor Science and Technology, 9, 105006.

    Article  Google Scholar 

  42. Rambu, A. P., Doroftei, C., Ursu, L., & Iacomi, F. (2013). Structure and gas sensing properties of nanocrystalline Fe-doped ZnO films prepared by spin coating method. Journal of Materials Science, 48, 4305–4312.

    Article  CAS  Google Scholar 

  43. Lee, J., & Han, C. S. (2013). Large-scale synthesis of highly emissive and photostable CuInS2/ZnS nanocrystals through hybrid flow reactor. Nanoscale Research Letters, 48, 4305–4312.

    Google Scholar 

  44. Liu, Y., Wang, G., Li, Y., & Jin, Z. (2019). 2D/1D Zn0.7Cd0.3S p-n heterogeneous junction enhanced with NiWO4 for efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 554, 113–124.

    Article  CAS  PubMed  Google Scholar 

  45. Cui, L., Ding, X., Wang, Y., Shi, H., Huang, L., Zuo, Y., & Kang, S. (2017). Facile preparation of Z-scheme WO3/g-C3N4 composite photocatalyst with enhanced photocatalytic performance under visible light. Applied Surface Science, 391, 202–210.

    Article  CAS  Google Scholar 

  46. Danish, M., & Muneer, M. (2021). Facile synthesis of highly efficient Co@ZnSQDs/g-C3N4/MWCNT nanocomposites and their photocatalytic potential for degradation of RhB dye: Efficiency, degradation kinetics, and mechanism pathway. Ceramics International, 47, 13043–13056.

    Article  CAS  Google Scholar 

  47. Suyana, P., Nishanth Kumar, S., Madhavan, N., Dileep Kumar, B. S., Nair, B. N., Mohamed, A. P., Warrier, K. G. K., & Hareesh, U. S. (2015). Reactive oxygen species (ROS) mediated enhanced anti-candidal activity of ZnS-ZnO nanocomposites with low inhibitory concentrations. RSC Advances, 5, 76718–76728.

    Article  CAS  Google Scholar 

  48. Hosseini, S., Jahangirian, H., Webster, T. J., Soltani, S. M., & Aroua, M. K. (2016). Synthesis, characterization, and performance evaluation of multilayered photoanodes by introducing mesoporous carbon and TiO2 for humic acid adsorption. International Journal of Nanomedicine, 11, 3969–3978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Alam, U., Kumar, S., Bahnemann, D., Koch, J., Tegenkamp, C., & Muneer, M. (2018). Harvesting visible light with MoO3 nanorods modified by Fe(iii) nanoclusters for effective photocatalytic degradation of organic pollutants. Physical Chemistry Chemical Physics, 20, 4538–4545.

    Article  CAS  PubMed  Google Scholar 

  50. Eltaweil, A. S., Ali Mohamed, H., Abd El-Monaem, E. M., & El-Subruiti, G. M. (2020). Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: Characterization, adsorption kinetics, thermodynamics and isotherms. Advanced Powder Technology, 31, 1253–1263.

    Article  CAS  Google Scholar 

  51. Danish, M., & Muneer, M. (2021). Novel ZnSQDs-SnO2/g-C3N4 nanocomposite with enhanced photocatalytic performance for the degradation of different organic pollutants in aqueous suspension under visible light. Journal of Physics and Chemistry of Solids, 149, 109785.

    Article  CAS  Google Scholar 

  52. Alam, U., Khan, A., Bahnemann, D., & Muneer, M. (2018). Synthesis of iron and copper cluster-grafted zinc oxide nanorod with enhanced visible-light-induced photocatalytic activity. Journal of Colloid and Interface Science, 509, 68–72.

    Article  CAS  PubMed  Google Scholar 

  53. Karthik, R., Govindasamy, M., Chen, S. M., Chen, T. W., Vinoth Kumar, J., Elangovan, A., Muthuraj, V., & Yu, M. C. (2017). A facile graphene oxide based sensor for electrochemical detection of prostate anti-cancer (anti-testosterone) drug flutamide in biological samples. RSC Advances, 7, 25702–25709.

    Article  CAS  Google Scholar 

  54. Iqbal, M. Z. (2016). Preparation, characterization, electrical conductivity and dielectric studies of Na2SO4 and V2O5 composite solid electrolytes. Measurement Journal of the International Measurement Confederation, 81, 102–112.

    Article  Google Scholar 

  55. Ahmad, N., Khan, S., & Ansari, M. M. N. (2018). Optical, dielectric and magnetic properties of Mn doped SnO2 diluted magnetic semiconductors. Ceramics International, 44, 15972–15980.

    Article  CAS  Google Scholar 

  56. Song, S. H., Wang, X., & Xiao, P. (2002). Effect of microstructural features on the electrical properties of TiO2. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 94, 40–47.

    Article  Google Scholar 

  57. Prateek, V. K. T., & Gupta, R. K. (2016). Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chemical Reviews, 116, 4260–4317.

    Article  CAS  PubMed  Google Scholar 

  58. Abdel-Basset, D. M., Mulmi, S., El-Bana, M. S., Fouad, S. S., & Thangadurai, V. (2017). Structure, Ionic Conductivity, and Dielectric Properties of Li-Rich Garnet-type Li5+2xLa3Ta2-xSmxO12 (0 ≤ x ≤ 0.55) and Their Chemical Stability. Inorganic Chemistry, 56, 8865–8877.

    Article  CAS  PubMed  Google Scholar 

  59. Ram, M. (2010). A.c. conductivity and dielectric properties of LiNi3/5Cu2/5VO4 ceramics. Physica B Condensed Matter, 405, 1359–1361.

    Article  CAS  Google Scholar 

  60. Shang, E., Li, Y., Niu, J., Li, S., Zhang, G., & Wang, X. (2018). Photocatalytic degradation of perfluorooctanoic acid over Pb-BiFeO3/rGO catalyst: Kinetics and mechanism. Chemosphere, 211, 34–43.

    Article  CAS  PubMed  Google Scholar 

  61. Warshagha, M. Z. A., & Muneer, M. (2020). Synthesis of Ph-modified graphitic carbon nitride for degradation of different chromophoric organic pollutants in aqueous suspension under visible light. Langmuir, 33, 9719–9727.

    Article  Google Scholar 

  62. Nath, S. S., Chakdar, D., Gope, G., Talukdar, A., & Avasthi, D. K. (2009). Luminescence study of ZnS quantum dots prepared by chemical method. Journal of Dispersion Science and Technology, 30, 1111–1113.

    Article  CAS  Google Scholar 

  63. Zhao, C., Arroyo-Mora, L. E., DeCaprio, A. P., Sharma, V. K., Dionysiou, D. D., & O’Shea, K. E. (2014). Reductive and oxidative degradation of iopamidol, iodinated X-ray contrast media, by Fe(III)-oxalate under UV and visible light treatment. Water Research, 67, 144–153.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the SERB Project (CRG/2019/001370), DST, ICMR-SRF Project (3/1/2(1)/Env./2021-NCD-II), and UGC for DRS II, PURSE & FIST support to the Department of Chemistry, Aligarh Muslim University.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Muneer.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1985 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athar, M.S., Muneer, M. Enhanced photodegradation of organic contaminants using V-ZnSQDs@TiO2 photocatalyst in an aqueous medium. Photochem Photobiol Sci 22, 695–712 (2023). https://doi.org/10.1007/s43630-022-00345-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00345-6

Keywords

Navigation