Skip to main content
Log in

Structure and gas sensing properties of nanocrystalline Fe-doped ZnO films prepared by spin coating method

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanocrystalline Fe-doped ZnO films were obtained by spin coating, using zinc acetate and iron acetate as starting materials and N,N-dimethylformamide as solvent. Characteristic XRD patterns indicate that the films under study are single phase with the ZnO-like wurtzite structure. There are not any secondary phases and Fe2+ as well as Fe3+ substitutes for Zn2+ of ZnO host. Atomic force microscopy analysis revealed that the studied films are characterized by high-density columnar structure and the incorporation of Fe atoms into the ZnO lattice modified the surface morphology. The sensitivity, at three different gases, was investigated and it was observed that acetone is the test gas that produces the most significant changes in the electrical resistance of all studied samples. Experimental results indicate that the optimum operating temperature increases for Fe-doped ZnO films by comparison with the undoped one. Also, the values of sensitivity were found to depend on the dopant concentration in ZnO films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ginley DS, Hosono H, Paine DC (2010) Handbook of transparent conductors. Springer, Berlin

  2. Faccchetti A, Marks TJ (2010) Transparent electronics: from synthesis to applications. Wiley, Chichester

  3. Pearton SJ, Abernathy CR, Norton DP, Hebard AF, Park YD, Boatner LA, Budai JD (2003) Mater Sci Eng R 40:137

    Article  Google Scholar 

  4. Pearton SJ, Abernathy CR, Overberg ME, Thaler GT, Norton DP, Theodoropoulou N, Hebard AF, Park YD, Ren F, Kim J, Boatner LA (2003) J Appl Phys 93:1

    Article  CAS  Google Scholar 

  5. Mizokawa T, Mambu T, Fujimori A, Fukurama T, Kawasaki M (2002) Phys Rev B Condens Mater, 65:085 209

    Google Scholar 

  6. Chakraborti D, Narayan J, Prater JT (2007) Appl Phys Lett 90:062504

    Google Scholar 

  7. Park JH, Kim MG, Jang HM, Ryu S, Kim YM (2004) Appl Phys Lett 84:1338

    Article  CAS  Google Scholar 

  8. Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Science 287:1019

    Article  CAS  Google Scholar 

  9. El-Hilo M, Dakhel AA, Ali-Mohamed AY (2009) J Magn Magn Mater 321:2279

    Article  CAS  Google Scholar 

  10. Liu H, Yang J, Zhang Y, Wang Y, Wei M (2008) Mater Chem Phys 112:1021

    Article  CAS  Google Scholar 

  11. Seiyama T, Kato A, Fujiishi K, Nagatani M (1962) Anal Chem 34:1502

    Article  CAS  Google Scholar 

  12. Zhang WH, Zhang WD, Zhou JF (2010) J Mater Sci 45:209. doi:10.1007/s10853-009-3920-y

    Article  CAS  Google Scholar 

  13. Lupan O, Shishiyanu S, Chow L, Shishiyanu T (2008) Thin Solid Films 516:3338

    Article  CAS  Google Scholar 

  14. Jung D (2010) Solid State Sci 12:466

    Article  CAS  Google Scholar 

  15. Alver U, Kılınc T, Bacaksız E, Nezir S (2007) Mater Sci Eng B 138:74

    Article  CAS  Google Scholar 

  16. Jin CG, Gao Y, Wu XM, Cui ML, Zhuge LJ, Chen ZC, Hong B (2010) Thin Solid Films 518:2152

    Article  CAS  Google Scholar 

  17. Xu Q, Hartmann L, Schmidt H, Hochmuth H, Lorenz M, Schmidt-Grund R, Spemann D, Rahm A, Grundmann M (2006) Thin Solid Films 515:2549

    Article  CAS  Google Scholar 

  18. Joint Committee Power Diffraction Standards, Power Diffraction File (Data file 36-1451)

  19. Cheng W, Ma X (2009) JPCS 152:012039

    Google Scholar 

  20. Paraguay F, Morales DJ, Estrada W, Andrade LE, Miki-Yoshida M (2000) Thin Solid Films 366:16

    Article  Google Scholar 

  21. Moholkar AV, Pawar SM, Rajpure KY, Patil PS, Bhosale CH (2007) J Phys Chem Solids 68:1981

    Article  CAS  Google Scholar 

  22. Ramadan AA, Abd El-Mongy AA, El-Shabiny AM, Mater AT, Mostafa SH, El-Sheheedy EA, Hashem HM (2009) Cryst Res Technol 44:111

    Article  CAS  Google Scholar 

  23. Cullity BD, Stock RS (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, Englewood Cliffs

  24. Ratheesh Kumar PM, Sudha Kartha C, Vijayakumar KP, Abe T, Kashiwaba Y, Singh F, Avasthi DK (2005) Semicond Sci Technol 20:120

    Article  Google Scholar 

  25. Venkatachalam S, Iida Y, Kanno Y (2008) Superlattice Microstruct 44:127

    Article  CAS  Google Scholar 

  26. Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (1978) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Eden Prairie

    Google Scholar 

  27. Kim KJ, Park YR (2004) J Appl Phys 96:4150

    Google Scholar 

  28. Bin Z, Min ZS, Wei WH, Liang DZ (2008) Chin Sci Bull 53:1639

    Article  CAS  Google Scholar 

  29. Pandey B, Ghosh S, Srivastava P, Kabiraj D, Shripati T, Lalla NP (2009) Phys E 41:1164

    Article  CAS  Google Scholar 

  30. Jeong Y, Bae C, Kim D, Song K, Woo K, Shin H, Cao G, Moon J (2010) ACS Appl Mater Interfaces 2:611

    Article  CAS  Google Scholar 

  31. Chen M, Wang X, Yu YH, Pei ZL, Bai XD, Sun C, Huang RF, Wen LS (2000) Appl Surf Sci 158:134

    Article  CAS  Google Scholar 

  32. Liu C, Yun F, Xiao B, Cho SJ, Moon YT, Morkoç H, Abouzaid M, Ruterana R, Yu KM, Walukiewicz W (2005) J Appl Phys 97:126107

    Google Scholar 

  33. Zhu BL, Xie CS, Wu J, Zeng DW, Wang AH, Zhao XZ (2006) Mater Chem Phys 96:459

    Article  CAS  Google Scholar 

  34. Sahay PP, Nath RK (2008) Sens Actuators B Chem 133:222

    Article  Google Scholar 

  35. Wagh MS, Jain GH, Patil DR, Patil SA, Patil LA (2006) Sens Actuators B Chem 115:128

    Article  Google Scholar 

  36. Chu X, Chen T, Zhang W, Zheng B, Shui H (2009) Sens Actuators B Chem 142:49

    Article  Google Scholar 

  37. Xu H, Liu X, Cui D, Li M, Jiang M (2006) Sens Actuators B Chem 114:301

    Article  Google Scholar 

  38. Shinde VR, Gujar TP, Lokhande CD (2007) Sens Actuators B 120:551

    Article  Google Scholar 

  39. Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Sensors 10:2088

    Article  CAS  Google Scholar 

  40. Sun YF, Liu SB, Meng FL, Liu JY, Jin Z, Kong LT, Liu JH (2012) Sensors 12:2610

    Article  CAS  Google Scholar 

  41. Korotcenkov G (2008) Mater Sci Eng R 61:1

    Article  Google Scholar 

  42. Rambu AP, Iftimie N, Nica V (2012) J Mater Sci 47:6979. doi:10.1007/s10853-012-6648-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. V. Nica and Dr. M. Dobromir for to carry out XRD and XPS investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Rambu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rambu, A.P., Doroftei, C., Ursu, L. et al. Structure and gas sensing properties of nanocrystalline Fe-doped ZnO films prepared by spin coating method. J Mater Sci 48, 4305–4312 (2013). https://doi.org/10.1007/s10853-013-7245-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7245-5

Keywords

Navigation