Skip to main content

Advertisement

Log in

Photoprotective properties of new derivatives of kinetin

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

A Correction to this article was published on 23 January 2023

This article has been updated

Abstract

The chronic exposure of skin to ultraviolet (UV) radiation causes adverse dermal reactions, such as erythema, sunburn, photoaging, and cancer, by altering several signalling pathways associated with oxidative stress, inflammation, and DNA damage. One of the possible UV light protection strategies is the use of dermal photoprotective preparations. The plant hormone kinetin (N6-furfuryladenine; KIN) exhibits antioxidant and anti-senescent effects in human cells. Topically applied KIN also reduced some of the clinical signs of photodamaged skin. To improve the biological activities of KIN, several derivatives have been recently prepared and their beneficial effects on cell viability of skin cells exposed to UVA and UVB light were screened. Two potent candidates, 6-(tetrahydrofuran-2-yl)methylamino-9-(tetrahydrofuran-2-yl)purine (HEO) and 6-(thiophen-2-yl)methylamino-9-(tetrahydrofuran-2-yl)purine (HEO6), were identified. Here the effects of KIN, its N9-substituted derivatives the tetrahydropyran-2-yl derivative of KIN (THP), tetrahydrofuran-2-yl KIN (THF), HEO and HEO6 (both THF derivatives) on oxidative stress, apoptosis and inflammation in UVA- or UVB-exposed skin cell was investigated. Human primary dermal fibroblasts and human keratinocytes HaCaT pre-treated with the tested compounds were then exposed to UVA/UVB light using a solar simulator. All compounds effectively prevented UVA-induced ROS generation and glutathione depletion in both cells. HEO6 was found to be the most potent. All compounds also reduced UVB-induced caspase-3 activity and interleukin-6 release. THP and THF exhibited the best UVB protection. In conclusion, our results demonstrated the UVA- and UVB-photoprotective potential of KIN and its derivatives. From this point of view, they seem to be useful agents for full UV spectrum protective dermatological preparations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Gromkowska-Kępka, K. J., Puścion-Jakubik, A., Markiewicz-Żukowska, R., & Socha, K. (2021). The impact of ultraviolet radiation on skin photoaging—review of in vitro studies. Journal of Cosmetic Dermatology, 20(11), 3427–3431. https://doi.org/10.1111/jocd.14033

    Article  PubMed  PubMed Central  Google Scholar 

  2. Haarmann-Stemmann, T., Abel, J., Fritsche, E., & Krutmann, J. (2012). The AhR-Nrf2 pathway in keratinocytes: On the road to chemoprevention? Journal of Investigative Dermatology, 132(1), 7–9. https://doi.org/10.1038/jid.2011.359

    Article  CAS  PubMed  Google Scholar 

  3. Svobodová, A., Walterová, D., & Vostálová, J. (2006). Ultraviolet light induced alteration to the skin. Biomedical papers of the Medical Faculty of the University Palacky Olomouc Czech Republic, 150(1), 25–38. https://doi.org/10.5507/bp.2006.003

    Article  Google Scholar 

  4. López-Camarillo, C., Ocampo, E. A., Casamichana, M. L., Pérez-Plasencia, C., Alvarez-Sánchez, E., & Marchat, L. A. (2012). Protein kinases and transcription factors activation in response to UV-radiation of skin: Implications for Carcinogenesis. International Journal of Molecular Sciences, 13(1), 142–172. https://doi.org/10.3390/ijms13010142

    Article  CAS  PubMed  Google Scholar 

  5. Svobodová, A., & Vostálová, J. (2010). Solar radiation induced skin damage: Review of protective and preventive options. International Journal of Radiation Biology, 86(12), 999–1030. https://doi.org/10.3109/09553002.2010.501842

    Article  CAS  PubMed  Google Scholar 

  6. Cragg, G. M., & Pezzuto, J. M. (2016). Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Medical Principles and Practice, 25(Suppl. 2), 41–59. https://doi.org/10.1159/000443404

    Article  PubMed  Google Scholar 

  7. Dinkova-Kostova, A. T. (2008). Phytochemicals as protectors against ultraviolet radiation: Versatility of effects and mechanisms. Planta Medica, 74(13), 1548–1559. https://doi.org/10.1055/s-2008-1081296

    Article  CAS  PubMed  Google Scholar 

  8. Miller, O., Skoog, F., Okomura, F. S., Von Saltza, M. H., & Strong, F. M. (1956). Isolation, structure and synthesis of kinetin, a substance promoting cell division. Journal of the American Chemical Society, 78(7), 1375–1380.

    Article  CAS  Google Scholar 

  9. Jabłońska-Trypuć, A., Matejczyk, M., & Czerpak, R. (2016). N6-benzyladenine and kinetin influence antioxidative stress parameters in human skin fibroblasts. Molecular and Cellular Biochemistry, 413, 97–107. https://doi.org/10.1007/s11010-015-2642-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Levin, J., & Momin, S. B. (2010). How much do we really know about our favourite cosmeceutical ingredients? Journal of Clinical and Aesthetic Dermatology, 3(2), 22–41.

    PubMed  PubMed Central  Google Scholar 

  11. McCullough, J. L., & Weinstein, G. D. (2002). Clinical study of safety and efficacy of using topical kinetin 0.1% (Kinerase) to treat photodamaged skin. Cosmetic Dermatology, 15, 29–32.

    Google Scholar 

  12. Wanitphakdeedecha, R., Meeprathom, W., & Manuskiatti, W. (2015). Efficacy and safety of 0.1% kinetin cream in the treatment of photoaging skin. Indian Journal of Dermatology, Venereology and Leprology, 81(5), 547. https://doi.org/10.4103/0378-6323.157446

    Article  PubMed  Google Scholar 

  13. Campos, P. M., de Camargo Júnior, F. B., de Andrade, J. P., & Gaspar, L. R. (2012). Efficacy of cosmetic formulations containing dispersion of liposome with magnesium ascorbyl phosphate, alpha-lipoic acid and kinetin. Photochemistry and Photobiology, 88(3), 748–752. https://doi.org/10.1111/j.1751-1097.2012.01086.x

    Article  CAS  PubMed  Google Scholar 

  14. Vicanova, J., Bouez, C., Lacroix, S., Lindmark, L., & Damour, O. (2006). Epidermal and dermal characteristics in skin equivalent after systemic and topical application of skin care ingredients. Annals of the New York Academy of Sciences, 1067, 337–342. https://doi.org/10.1196/annals.1354.046

    Article  CAS  PubMed  Google Scholar 

  15. Wu, J. J., Weinstein, G. D., Kricorian, G. J., Kormeili, T., & McCullough, J. L. (2007). Topical kinetin 0.1% lotion for improving the signs and symptoms of rosacea. Clinical and Experimental Dermatology., 32(6), 693–695. https://doi.org/10.1111/j.1365-2230.2007.02513.x

    Article  CAS  PubMed  Google Scholar 

  16. Chiu, P. C., Chan, C. C., Lin, H. M., & Hsien-Ching, C. (2007). The clinical anti-aging effects of topical kinetin and niacinamide in Asians: A randomized, double-blind, placebo-controlled, split-face comparative trial. Journal of Cosmetic Dermatology, 6(4), 243–249. https://doi.org/10.1111/j.1473-2165.2007.00342.x

    Article  PubMed  Google Scholar 

  17. Kimura, T., & Doi, K. (2004). Depigmentation and rejuvenation effects of kinetin on the aged skin of hairless descendants of Mexican hairless dogs. Rejuvenation Research, 7(1), 32–39. https://doi.org/10.1089/154916804323105062

    Article  CAS  PubMed  Google Scholar 

  18. McCullough, J. L., Garcia, R. L., & Reece, B. (2008). A clinical study of topical Pyratine 6 for improving the appearance of photodamaged skin. Journal of Drugs in Dermatology, 7(2), 131–135.

    PubMed  Google Scholar 

  19. http://www.pyratine.com/. Retrieved 7 Jun 2022

  20. Szüčová, L., Zatloukal, M., Spíchal, L., Frohlich, L., Doležal, K., Strnad, M. & Massino, F. (2016) 6,9-disubstituted purine derivatives for cosmetic use. IEB AS CR, EP2043630B1.

  21. Hönig, M., Plíhalová, L., Spíchal, L., Grúz, J., Kadlecová, A., Voller, J., Rajnochová Svobodová, A., Vostálová, J., Ulrichová, J., Doležal, K., & Strnad, M. (2018). New cytokinin derivatives possess UVA and UVB photoprotective effect on human skin cells and prevent oxidative stress. European Journal of Medicinal Chemistry, 150, 946–957. https://doi.org/10.1016/j.ejmech.2018.03.043

    Article  CAS  PubMed  Google Scholar 

  22. Szücová, L., Spíchal, L., Dolezal, K., Zatloukal, M., Greplová, J., Galuszka, P., Krystof, V., Voller, J., Popa, I., Massino, F. J., Jørgensen, J. E., & Strnad, M. (2009). Synthesis, characterization and biological activity of ring-substituted 6-benzylamino-9-tetrahydropyran-2-yl and 9-tetrahydrofuran-2-ylpurine derivatives. Bioorganic and Medicinal Chemistry, 17(5), 1938–1947. https://doi.org/10.1016/j.bmc.2009.01.041

    Article  CAS  PubMed  Google Scholar 

  23. Boukamp, P., Petrussevska, R. T., Breitkreutz, D., Hornung, J., Markham, A., & Fusenig, N. E. (1988). Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. Journal of Cell Biology, 106(3), 761–771. https://doi.org/10.1083/jcb.106.3.761

    Article  CAS  PubMed  Google Scholar 

  24. Rajnochová Svobodová, A., Gabrielová, E., Michaelides, L., Kosina, P., Ryšavá, A., Ulrichová, J., Zálešák, B., & Vostálová, J. (2018). UVA-photoprotective potential of silymarin and silybin. Archives of Dermatological Research, 310(5), 413–424. https://doi.org/10.1007/s00403-018-1828-6

    Article  CAS  PubMed  Google Scholar 

  25. Svobodová, A., Zdařilová, A., Mališková, J., Mikulková, H., Walterová, D., & Vostalová, J. (2007). Attenuation of UVA-induced damage to human keratinocytes by silymarin. Journal of Dermatological Science, 46(1), 21–30. https://doi.org/10.1016/j.jdermsci.2006.12.009

    Article  CAS  PubMed  Google Scholar 

  26. Cronin, H., & Draelos, Z. D. (2010). Top 10 botanical ingredients in 2010 anti-aging creams. Journal of Cosmetic Dermatology, 9(3), 218–225. https://doi.org/10.1111/j.1473-2165.2010.00516.x

    Article  PubMed  Google Scholar 

  27. Goindi, S., Guleria, A., & Aggarwal, N. (2015). Development and evaluation of solid lipid nanoparticles of N-6-furfuryl adenine for prevention of photoaging. Journal of Biomedical Nanotechnology, 11(10), 1734–1746. https://doi.org/10.1166/jbn.2015.2111

    Article  CAS  PubMed  Google Scholar 

  28. An, S., Cha, H. J., Ko, J. M., Han, H., Kim, S. Y., Kim, K. S., Lee, S. J., An, I. S., Kim, S., Youn, H. J., Ahn, K. J., & Kim, S. Y. (2017). Kinetin improves barrier function of the skin by modulating keratinocyte differentiation markers. Annals of Dermatology, 29(1), 6–12. https://doi.org/10.5021/ad.2017.29.1.6

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yang, B., Ji, C., Kang, J., Chen, W., Bi, Z., & Wan, Y. (2009). Trans-Zeatin inhibits UVB-induced matrix metalloproteinase-1 expression via MAP kinase signaling in human skin fibroblasts. International Journal of Molecular Medicine, 23(4), 555–560. https://doi.org/10.3892/ijmm_00000164

    Article  CAS  PubMed  Google Scholar 

  30. Wei, Y., Liu, D., Zheng, Y., Hao, C., Li, H., & Ouyang, W. (2018). Neuroprotective effects of kinetin against glutamate-induced oxidative cytotoxicity in HT22 cells: Involvement of Nrf2 and heme oxygenase-1. Neurotoxicity Research, 33(4), 725–737. https://doi.org/10.1007/s12640-017-9811-0

    Article  CAS  PubMed  Google Scholar 

  31. Othman, E. M., Naseem, M., Awad, E., Dandekar, T., & Stopper, H. (2016). The plant hormone cytokinin confers protection against oxidative stress in mammalian cells. PLoS ONE, 11(12), e0168386. https://doi.org/10.1371/journal.pone.0168386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gonzalez, G., Grúz, J., D’Acunto, C. W., Kaňovský, P., & Strnad, M. (2021). Cytokinin plant hormones have neuroprotective activity in in vitro models of Parkinson’s disease. Molecules, 26(2), 361. https://doi.org/10.3390/molecules26020361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rattan, S. I., & Sodagam, L. (2005). Gerontomodulatory and youth-preserving effects of zeatin on human skin fibroblasts undergoing aging in vitro. Rejuvenation Research, 8(1), 46–57. https://doi.org/10.1089/rej.2005.8.46

    Article  CAS  PubMed  Google Scholar 

  34. D’Orazio, J., Jarrett, S., Amaro-Ortiz, A., & Scott, T. (2013). UV radiation and the skin. International Journal of Molecular Sciences, 14(6), 12222–12248. https://doi.org/10.3390/ijms140612222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, M., Ouyang, W., Wu, X., Zheng, Y., Wei, Y., & An, L. (2014). Kinetin inhibits apoptosis of aging spleen cells induced by D-galactose in rats. Journal of Veterinary Science, 15(3), 353–359. https://doi.org/10.4142/jvs.2014.15.3.353

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express our thanks to Iveta Hatalová (University Hospital Olomouc) for support with the recruitment of skin tissue donors. This study was financially supported by the Grant IGA_LF_2022_025 and IGA_PrF_2022_012 and the Institutional Support of Palacký University, Olomouc - RVO 61989592.

Author information

Authors and Affiliations

Authors

Contributions

ARS and JV designed the experiments, performed some experiments (ROS generation, GSH and caspase-3 level) and wrote the main manuscript. DŠ was responsible for preparation of cell cultures, viability and ELISA assays. MH was responsible for test compounds synthesis and purification and for preparation of the manuscript. BZ was responsible for recruitment of skin tissue donors and sample collection. LP was responsible for critical proofreading of data and the text of the manuscript. All authors contributed to data analysis and manuscript writing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alena Rajnochová Svobodová.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The photoprotective properties of new derivatives were the subject of the below patent applications: Hönig, M.; Plíhalová, L.; Doležal, K.; Voller, J.; Strnad, M.; Spíchal L.; Vostálová, J.; Rajnochová Svobodová, A.; Ulrichová J.; Kadlecová A.; Plíhal O. Adenine derivatives and their use as UV-photoprotective agents. PCT application WO2017036434A1, 2017. Hönig, M.; Plíhalová, L.; Doležal, K.; Voller, J.; Strnad, M.; Spíchal L.; Vostálová, J.; Rajnochová Svobodová, A.; Ulrichová J.; Kadlecová A.; Plíhal O. Adenine derivatives and their use. Czech Republic. Patent no. 307722, 2019. Hönig, M.; Plíhalová, L.; Doležal, K.; Voller, J.; Strnad, M.; Spíchal L.; Vostálová, J.; Rajnochová Svobodová, A.; Ulrichová J.; Kadlecová A.; Plíhal O. Adenine derivatives and their use as UV-photoprotective agents. United States. Patent no. US10774084, 2020.

Ethics approval and consent to participate

The Ethics Committee of University Hospital Olomouc and the Faculty of Medicine and Dentistry, Palacký University, Olomouc approved the use of superfluous skin from human volunteers (ref. number 41/09). All volunteers gave their written informed consent.

Additional information

The original online version of this article was revised: Most of given and family names were exchanged.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vostálová, J., Škařupová, D., Plíhalová, L. et al. Photoprotective properties of new derivatives of kinetin. Photochem Photobiol Sci 22, 357–369 (2023). https://doi.org/10.1007/s43630-022-00320-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00320-1

Keywords

Navigation