Skip to main content
Log in

In Vitro Evaluation of the Photoprotective Potential of Quinolinic Alkaloids Isolated from the Antarctic Marine Fungus Penicillium echinulatum for Topical Use

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Marine-derived fungi proved to be a rich source of biologically active compounds. The genus Penicillium has been extensively studied regarding their secondary metabolites and biological applications. However, the photoprotective effects of these metabolites remain underexplored. Herein, the photoprotective potential of Penicillium echinulatum, an Antarctic alga-associated fungus, was assessed by UV absorption, photostability study, and protection from UVA-induced ROS generation assay on human immortalized keratinocytes (HaCaT) and reconstructed human skin (RHS). The photosafety was evaluated by the photoreactivity (OECD TG 495) and phototoxicity assays, performed by 3T3 neutral red uptake (3T3 NRU PT, OECD TG 432) and by the RHS model. Through a bio-guided purification approach, four known alkaloids, (-)-cyclopenin (1), dehydrocyclopeptine (2), viridicatin (3), and viridicatol (4), were isolated. Compounds 3 and 4 presented absorption in UVB and UVA-II regions and were considered photostable after UVA irradiation. Despite compounds 3 and 4 showed phototoxic potential in 3T3 NRU PT, no phototoxicity was observed in the RHS model (reduction of cell viability < 30%), which indicates their very low acute photoirritation and high photosafety potential in humans. Viridicatin was considered weakly photoreactive, while viridicatol showed no photoreactivity; both compounds inhibited UVA-induced ROS generation in HaCaT cells, although viridicatol was not able to protect the RHS model against UVA-induced ROS production. Thus, the results highlighted the photoprotective and antioxidant potential of metabolites produced by P. echinulatum which can be considered a new class of molecules for photoprotection, since their photosafety and non-cytotoxicity were predicted using recommended in vitro methods for topical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Hadi AM, Awad M, Abo-Dahab N, El-Shanawany A, Abdelkader M, Abo-Kadoum M (2015) Viridicatin and Dehydrocyclopeptine, two bioactive alkaloids isolated from marine derived fungus Penicillium aurantiogriseum AUMC 9759. Issues Biol Sci Pharma Res 3:115–122

  • Agrawal S, Adholeya A, Barrow CJ, Deshmukh SK (2018) Marine fungi: an untapped bioresource for future cosmeceuticals. Phytochem Lett 23:15–20

    Article  CAS  Google Scholar 

  • Andoh Y, Mizutani A, Ohashi T, Kojo S, Ishii T, Adachi Y, Ikehara S, Taketani S (2006) The Antioxidant Role of a Reagent, 2’,7’-Dichlorodihydrofluorescin Diacetate, Detecting Reactive-Oxygen Species and Blocking the Induction of Heme Oxygenase-1 and Preventing Cytotoxicity. J Biochem 140:483–489

    Article  CAS  PubMed  Google Scholar 

  • Arcangeli C, Cannistraro S (2000) In situ Raman microspectroscopic identification and localization of carotenoids: approach to monitoring of UV-B irradiation stress on Antarctic fungus. Biopolymers 57:179–186

    Article  CAS  PubMed  Google Scholar 

  • Armento AJ, Oldach J, Stolper G, Li M, Bachelor MA, Hayden PJ (2015) Evaluation of Cutaneous Damage and Repair Following Acute Solar Ultraviolet Radiation Exposure: Experiments with an In Vitro Reconstructed Human Skin Model and Excised Human Ski. Appl In Vitro Toxicol 1:109–117

    Article  Google Scholar 

  • Awad F, Assrawi E, Louvrier C, Jumeau C, Giurgea I, Amselem S, Karabina SA (2018) Photoaging and skin cancer: Is the inflammasome the missing link? Mech Ageing Dev 172:131–137

    Article  CAS  PubMed  Google Scholar 

  • Boulis AG, Hamed AA, El-awady ME, Mohamed AR, Eliwa EM, Asker MMS, Shaaban M (2020) Diverse bioactive metabolites from Penicillium sp. MMA derived from the red sea: structure identification and biological activity studies. Arch Microbiol 202:1985–1996

    Article  CAS  PubMed  Google Scholar 

  • Cadena-Aizaga MI, Montesdeoca-Esponda S, Torres-Padrón ME, Sosa-Ferrera Z, Santana-Rodríguez JJ (2020) Organic UV filters in marine environments: an update of analytical methodologies, occurrence and distribution. Trends Environ Anal Chem 25:e00079

    Article  CAS  Google Scholar 

  • Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994–2020 ACD/Labs)

  • Carpentieri-Rodrigues LN, Zanluchi JM, Grebogi IH (2007) Percutaneous absorption enhancers: mechanisms and potential. Braz Arch Biol Technol 50:949–961

    Article  CAS  Google Scholar 

  • Ceridono M, Tellner P, Bauer D, Barroso J, Alépée N, Corvi R, De Smedt A, Fellows MD, Gibbs NK, Heisler E, Jacobs A, Jirova D, Jones D, Kandárová H, Kasper P, Akunda JK, Krul C, Learn D, Wilcox P (2012) The 3T3 neutral red uptake phototoxicity test: practical experience and implications for phototoxicity testing-the report of an ECVAM-EFPIA workshop. Regul Toxicol Pharmacol 63:480–488

    Article  CAS  PubMed  Google Scholar 

  • Corinaldesi C, Barone G, Marcellini F, Del’Anno A, Danovaro R (2017) Marine microbial-derived molecules and their potential use in cosmeceutical and cosmetic products. Mar Drugs 15:118

    Article  PubMed Central  Google Scholar 

  • Diffey BL (1994) A method for broad spectrum classification of sunscreens. Int J Cosmet Sci 16:47–52

    Article  CAS  PubMed  Google Scholar 

  • DiNardo JC, Downs CA (2018) Dermatological and environmental toxicological impact of the sunscreen ingredient oxybenzone/benzophenone-3. J Cosmet Dermatol 17:15–19

    Article  PubMed  Google Scholar 

  • Downs CA, Kramarsky-Winter E, Segal R, Fauth J, Knutson S, Bronstein O, Ciner FR, Jeger R, Lichtenfeld Y, Woodley CM, Pennington P, Cadenas K, Kushmaro A, Loya Y (2016) Toxicopathological effects of the sunscreen UV filter, oxybenzone (Benzophenone-3), on coral Planulae and cultured primary cells and its environmental contamination in Hawaii and the U.S. Virgin Islands. Arch Environ Contam Toxicol 70:265–288

    Article  CAS  PubMed  Google Scholar 

  • Eljarrat E, Barceló D (2003) Priority lists for persistent organic pollutants and emerging contaminants based on their relative toxic potency in environmental samples. TrAC-Trends Anal Chem 22:655–665

    Article  CAS  Google Scholar 

  • European Commission - Call for data on ingredients with potential endocrine-disrupting properties used in cosmetic products, European Commission (2019) Available at: https://ec.europa.eu/growth/content/call-data-ingredients-potential-endocrine-disrupting-properties-used-cosmetic-products_en. Accessed: 10 Nov 2020

  • Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, Voorhees JJ (2002) Mechanisms of photoaging and chronological skin aging. Arch Dermatol 138:1462–1470

    Article  CAS  PubMed  Google Scholar 

  • Food and Drug Administration (FDA) (2019) Sunscreen Drug Products for Over-the-Counter Human Use, Federal Register, 84, 6204–6275. Available at: https://www.govinfo.gov/content/pkg/FR-2019-02-26/pdf/2019-03019.pdf. Accessed: 12 Aug 2020

  • Freitas JV, Lopes NP, Gaspar LR (2015a) Photostability evaluation of five UV-filters, trans-resveratrol and beta-carotene in sunscreens. Eur J Pharm Sci 78:79–89

    Article  CAS  PubMed  Google Scholar 

  • Freitas JV, Praça FS, Bentley MV, Gaspar LR (2015b) Trans-resveratrol and beta-carotene from sunscreens penetrate viable skin layers and reduce cutaneous penetration of UV-filters. Int J Pharm 484:131–137

    Article  CAS  PubMed  Google Scholar 

  • Fremlin LJ, Piggott AM, Lacey E, Capon RJ (2009) Cottoquinazoline A and cotteslosins A and B, metabolites from an Australian marine-derived strain of Aspergillus versicolor. J Nat Prod 72:666–670

    Article  CAS  PubMed  Google Scholar 

  • Frisvad J (2015) Fungal Chemotaxonomy. In: Zeilinger S., Martín JF., García-Estrada C. (eds.) Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites, Springer, New York, NY, pp. 103–121. https://doi.org/10.1007/978-1-4939-2531-5_7

  • Gaspar LR, Maia Campos PMBG (2006) Evaluation of the photostability of different U filter combinations in a sunscreen. Int J Pharm 307:123–128

    Article  CAS  PubMed  Google Scholar 

  • Gaspar LR, Tharmann J, Maia Campos PMBG, Liebsch M (2013) Skin phototoxicity of cosmetic formulations containing photounstable and photostable UV-filters and vitamin a palmitate. Toxicol in Vitro 27:418–425

    Article  CAS  PubMed  Google Scholar 

  • Gaspar LR, Kawakami CM, Benevenuto CG (2017) In: Eskes C, van Vliet E, Maibach H (eds.) Alternatives for Dermal Toxicity Testing, Springer International Publishing AG. Cham, Switzerland, pp. 463–476.

  • Hader DP (2000) Effects of solar UV-B radiation on aquatic ecosystems. Adv Space Res 26:2029–2040

    Article  CAS  PubMed  Google Scholar 

  • Heurung AR, Raju SI, Warshaw EM (2014) Adverse reactions to sunscreen agents: epidemiology, responsible irritants and allergens, clinical characteristics, and management. Dermatitis 25:289–326

    Article  CAS  PubMed  Google Scholar 

  • ICH - International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, ICH Harmonized tripartite Guideline: Photosafety Evaluation of Pharmaceuticals S10, Step 4 version. International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals For Human Use (2013). Available at: https://database.ich.org/sites/default/files/S10_Guideline.pdf. Accessed: 12 Aug 2020

  • Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defense grid. Alexandria J Med 54:287–293

    Article  Google Scholar 

  • Ishikawa N, Tanaka H, Koyama F, Noguchi H, Wang CCC, Hotta K, Watanabe K (2014) Non heme dioxygenase catalyzes atypical oxidations of 6,7-bicyclic systems to form the 6,6 quinolone core of viridicatin-type fungal alkaloid**. Angew Chem Int Ed 53:1–6

    Article  Google Scholar 

  • JACVAM - Japanese Center for the Validation of Alternative Methods. Reactive oxygen species (ROS) assay to examine photoreactivity of chemicals (2013) Available at: http://www.jacvam.jp/files/news/ROS_protocol_v3.1_130920_clean.pdf. Accessed: 12 Aug 2020

  • Kalyanaraman B, Darley-Usmar V, Davies KJ, Dennery PA, Forman HJ, Grisham MB, Mann GE, Moore K, Roberts LJ, Ischiropoulos H (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52:1–6

    Article  CAS  PubMed  Google Scholar 

  • Kandarova H, Liebsch M (2017) In: Eskes C, van Vliet E, Maibach HI (eds.) Alternatives for Dermal Toxicity Testing, Springer International Publishing: Cham, Switzerland, pp. 483–503. https://doi.org/10.1007/978-3-319-50353-0_35

  • Kaulmann A, Bohn T (2014) Carotenoids, inflammation, and oxidative stress—implications of cellular signaling pathways and relation to chronic disease prevention. Nutr Res 34:907–929

    Article  CAS  PubMed  Google Scholar 

  • Kejlová K, Jírová D, Bendová H, Kandárová H, Weidenhoffer Z, Kolárová H, Liebsch M (2007) Phototoxicity of bergamot oil assessed by in vitro techniques in combination with human patch tests. Toxicol In Vitr 21:1298–1303

    Article  Google Scholar 

  • Kishimoto S, Hara K, Hashimoto H, Hirayama Y, Champagne PA, Houk KN, Tang Y, Watanabe K (2018) Enzymatic one-step ring contraction for quinolone biosynthesis. Nat Commun 9:2826

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim AL, Labasi JM, Zhu Y, Tang X, McClure K, Gabel CA, Athar M, Bickers DR (2005) Role of p38 MAPK in UVB-Induced Inflammatory Responses in the Skin of SKH-1 Hairless Mice. J Invest Dermatol 124:1318–1325

    Article  CAS  PubMed  Google Scholar 

  • Ko W, Sohn JH, Kim YC, Oh H (2015) Viridicatol from Marine-derived Fungal Strain Penicillium sp. SF-5295 Exerts Anti-inflammatory Effects through Inhibiting NF-κB Signaling Pathway on Lipopolysaccharide-induced RAW264.7 and BV2 Cells. Nat Prod Sci 21:240–247

  • Kobayashi Y, Harayama T (2009) A Concise and versatile synthesis of viridicatin alkaloids from cyanoacetanilides. Org Lett 11:1603–1606

    Article  CAS  PubMed  Google Scholar 

  • Kogej T, Gostincar C, Volkmann M, Gorbushina AA, Gunde-Cimerman N (2006) Mycosporines in extremophilic fungi-novel complementary osmolytes. Environ Chem 3:105–110

    Article  CAS  Google Scholar 

  • Kumar A, Asthana M, Gupta A, Nigam D, Mahajan S (2018) In: (eds.) Secundary Metabolism and Antimicrobial Metabolites of Penicillium. New and Future Developments in Microbial Biotechnology and Bioengineering, New and Future Developments in Microbial Biotechnologya and Bioengineering, pp. 47–68.

  • Kurutas EB (2015) The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 15:71

    Article  Google Scholar 

  • Kusano M, Koshino H, Uzawa J, Fujioka S, Kawano T, Kimura Y (2000) Nematicidal alkaloids and related compounds produced by the fungus Penicillium cf. simplicissimum. Biosci Biotechnol Biochem 64:2559–2568

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li X, Kang JS, Choi HD, Son BW (2004a) New radical scavenging and ultraviolet-A protecting prenylated dioxopiperazine alkaloid related to isoechinulin A from a marine isolate of the fungus Aspergillus. J Antibiot 57:337–340

    Article  CAS  Google Scholar 

  • Li Y, Li X, Kim SK, Kang JS, Choi HD, Rho JR, Son BW (2004) Golmaenone, a new diketopiperazine alkaloid from the marine-derived fungus Aspergillus sp. Chem Charmaceut Bull 52:375–376

    Article  CAS  Google Scholar 

  • Liang P, Zhang YY, Yang P, Grond S, Zhang Y, Qian ZJ (2019) Viridicatol and viridicatin isolated from a shark-gill-derived fungus Penicillium polonicum AP2T1 as MMP-2 and MMP-9 inhibitors in HT1080 cells by MAPKs signaling pathway and docking studies. Med Chem Res 28:1039–1048

    Article  CAS  Google Scholar 

  • Maciel OMC, Tavares RSN, Caluz DRE, Gaspar LR, Debonsi HM (2018) Photoprotective potential of metabolites isolated from algae-associated fungi Annulohypoxylon stygium. J Photochem Photobiol B 178:316–322

    Article  CAS  PubMed  Google Scholar 

  • Maipas S, Nicolopoulou-Stamati P (2015) Sun lotion chemicals as endocrine disruptors. Hormones 14:32–46

    Article  PubMed  Google Scholar 

  • Mancebo SE, Hu JY, Wang SQ (2014) Sunscreens: a review of health benefits, regulations, and controversies. Dermatol Clin 32:427–438

    Article  CAS  PubMed  Google Scholar 

  • Marionnet C, Pierrard C, Golebiewski C, Bernerd F (2014) Diversity of biological effects induced by longwave UVA rays (UVA1) in reconstructed skin. PLoS One 9:e105263

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsui MS (2016) In: Wang S, Lim H (eds.) Principles and Practice of Photoprotection. ADIS Cham, pp. 361–375

  • Nashev LG, Schuster D, Laggner C, Sodha S, Langer T, Wolber G, Odermatt A (2010) The UV-filter benzophenone-1 inhibits 17β-hydroxysteroid dehydrogenase type 3: Virtual screening as a strategy to identify potential endocrine disrupting chemicals. Biochem Pharmacol 79:1189–1199

    Article  CAS  PubMed  Google Scholar 

  • Ngoc LTN, Tran VV, Moon JY, Chae M, Park D, Lee YC (2019) Recent trends of sunscreen cosmetic: an update review. Cosmetics 6:1–14

    Article  Google Scholar 

  • OECD- Organization for Economic Co-operation and Development, OECD guidelines for testing of chemicals test n°. 495: Ros (Reactive Oxygen Species) Assay for Photoreactivity (2019a) Available at: https://www.oecd-ilibrary.org/docserver/915e00ac-en.pdf. Accessed: 12 Aug 2020

  • OECD- Organization for Economic Co-operation and Development, OECD guidelines for testing of chemicals test n°. 432: In vitro 3T3 NRU Phototoxicity Test (2019b) Available at: Accessed: 12 Aug 2020

  • OECD- Organization for Economic Co-operation and Development, OECD guidelines for testing of chemicals test n°. 439: Reconstructed Human Epidermis Test Method (2020) Available at: Accessed: 14 Aug 2020

  • Onoue S, Hosoi K, Wakuri S, Iwase Y, Yamamoto T, Matsuoka N, Nakamura K, Toda T, Takagi H, Osaki N, Matsumoto Y, Kawakami S, Seto Y, Kato M, Yamada S, Ohno Y, Kojima H (2013) Establishment and intra-/inter-laboratory validation of a standard protocol of reactive oxygen species assay for chemical photosafety evaluation. J Appl Toxicol 33:1241–1250

  • Oren A, Gunde-Cimerman N (2007) Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett 269:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ozáez I, Martínez-Guitarte JL, Morcillo G (2013) Effects of in vivo exposure to UV filters (4-MBC, OMC, BP-3, 4-HB, OC, OD-PABA) on endocrine signaling genes in the insect Chironomus riparius. Sci Total Environ 456–457:120–126

    Article  PubMed  Google Scholar 

  • Peters B, Holzhütter HJ (2002) In vitro phototoxicity testing: development and validation of a new concentration response analysis software and biostatistical analyses related to the use of various prediction models. ATLA 30:415–432

    CAS  PubMed  Google Scholar 

  • Pillai S, Oresajo C, Hayward J (2005) Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation – a review. Int J Cosmet Sci 27:17–34

    Article  CAS  PubMed  Google Scholar 

  • Pivetta TP, Silva LB, Kawakami CM, Araújo MM, Del Lama MPFM, Naal RMZG, Maria-Engler SS, Gaspar LR, Marcato PD (2019) Topical formulation of quercetin encapsulated in natural lipid nanocarriers: Evaluation of biological properties and phototoxic effect. J Drug Deliv Sci Techno 53:101148

    Article  CAS  Google Scholar 

  • Ramaswamy BR (2015) In: Díaz-Cruz MS, Barceló D (eds.) Personal Care Products in the Aquatic Environment. Hdb Env Chem., pp. 139–164.

  • Rangel KC, Villela LZ, Pereira KC, Colepicolo P, Debonsi HM, Gaspar LR (2020) Assessment of the photoprotective potential and toxicity of Antarctic red macroalgae extracts from Curdiea racovitzae and Iridaea cordata for cosmetic use. Algal Res 50:101984–101997

    Article  Google Scholar 

  • Rasmussen C, Gratz K, Liebel F, Southall M, Garay M, Bhattacharyya S, Simon N, Vander Zanden M, Van Winkle K, Pirnstill J, Pirnstill S, Comer A, Allen-Hoffmann BL (2010) Comer, B. Allen-Hoffmann, The StrataTest® human skin model, a consistent in vitro alternative for toxicological testing. Toxicol Vitr 24:2021–2029

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Stanier RY (1979) Generic assignments, strain histories and properties ofpure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Saewan N, Jimtaisong A (2015) Natural products as photoprotection. J Cosmet Dermatol 14:47–63

  • Satyanarayana T, Deshmukh SK, Deshpande MV (2019) Advancing in Mycology & Mycotechnology. Springer Nature, Singapore

  • SCCP - Scientific Committee on Consumer Products, Opinion on benzophenone-3. Colipa n°S38 adopted by the Scientific Committee on Consumer Products during the 10th Plenary. European Commission (2006) SCCP/1069/06. Available at: https://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_078.pdf. Accessed: 10 Nov 2020

  • SCCS - Scientific Committee on Consumer Safety, The SCCS notes of guidance for the testing of cosmetic ingredients and their safety evaluation (2018) Available at: https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_224.pdf. Accessed: 05 Aug 2020

  • Schneider SL, Lim HW (2019) Review of environmental effects of oxybenzone and other sunscreen active ingredients. J Am Acad Dermatol 80:266–271

    Article  CAS  PubMed  Google Scholar 

  • Shaath NA (2016) In: Wang S, Lim H (eds.) Principles and Practice of Photoprotection. ADIS, Cham, pp. 217–238.

  • Silva TR, Tavares RSN, Canela-Garayoa R, Eras J, Rodrigues MVN, Neri-Numa IA, Pastore GM, Rosa LH, Schultz JAA, Debonsi HM, Cordeiro LRG, Oliveira VM (2019) Chemical characterization and biotechnological applicability of pigments isolated from Antarctic bacteria. Mar Biotechnol 21:416–429

    Article  CAS  Google Scholar 

  • Springsteen A, Yurek R, Frazier M, Carr K (1999) In vitro measurement of sun protection factor of sunscreens by diffuse transmittance. Anal Chim Acta 380:155–164

    Article  CAS  Google Scholar 

  • Svobodova AR, Ryšava A, Psotova M, Kosina P, Zalešak B, Ulrichova J, Vostalova J (2017) The phototoxic potential of the flavonoids, taxifolin and quercetin. Photochem Photobiol 3:1240–1247

    Article  Google Scholar 

  • Tavares RSN, Kawakami CM, Pereira KC, Amaral GT, Benevenuto CG, Maria-Engler SS, Colepicolo P, Debonsi HM, Gaspar LR (2020) Fucoxanthin for Topical Administration, a Phototoxic vs. Photoprotective Potential in a Tiered Strategy Assessed by In Vitro Methods. Antioxidants 9:328

  • Torres A, Hochberg M, Pergament I, Smoum R, Niddam V, Dembitsky VM, Temina M, Dor I, Lev O, Srebnik M, Enk CD (2004) A new UV-B absorbing mycosporine with photo protective activity from the lichenized ascomycete Collema cristatum. Eur J Biochem 271:780–784

    Article  CAS  PubMed  Google Scholar 

  • Tsui MMP, Lam JCW, Ng TY, Ang PO, Murphy MB, Lam PKS (2017) Occurrence, distribution, and fate of organic UV filters in coral communities. Environ Sci Technol 51:4182–4190

    Article  CAS  PubMed  Google Scholar 

  • Uzun M, Demirezer LO (2019) Anti-aging power of Rumex crispus L.: matrixmetalloproteinases inhibitor, sun protective and antioxidant. S Afr J Bot 124:364–371

    Article  CAS  Google Scholar 

  • Wang J, Pan L, Wu S, Lu L, Xu Y, Zhu Y, Guo M, Zhuang S (2016a) Recent advances on endocrine disrupting effects of UV filters. Int J Environ Res Public Health 13:782–793

    Article  CAS  PubMed Central  Google Scholar 

  • Wang X, Huang Y, Wang L, Xu L, Yu X, Liu Y, Li C, Zhan JY, Su Z, Chen J, Zeng H (2016b) Photo-protective activity of pogostone against UV-induced skin premature aging in mice. Exp Gerontol 77:76–86

    Article  PubMed  Google Scholar 

  • Wang SQ, Lim HW (2016) Principles and practice of photoprotection. Springer International Publishing, Cham, Switzerland

    Book  Google Scholar 

  • Wei M, Yang R, Shao C, Wang C, Deng D, She Z, Lin Y (2011) Isolation, structure elucidation, crystal structure, and biological activity of a marine natural alkaloid, viridicatol. Chem Nat Compd 47:322–325

    Article  CAS  Google Scholar 

  • Wuttke W, Jarry H, Seidlova-Wuttke D (2010) Definition, classification and mechanism of action of endocrine disrupting chemicals. Hormones 9:9–15

    Article  PubMed  Google Scholar 

  • Xu Y, Shao Y, Voorhees JJ, Fisher GJ (2006) Oxidative inhibition of receptor-type protein-tyrosine phosphatase κ by ultraviolet irradiation activates epidermal growth factor receptor in human keratinocytes. J Biol Chem 281:27389–27397

    Article  CAS  PubMed  Google Scholar 

  • Young AR, Claveau J, Rossi AB (2017) Ultraviolet radiation and the skin: photobiology and sunscreen photoprotection. J Am Acad Dermatol 76:S100–S109

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Yang X, Kang JS, Choi HD, Son BW (2008) Circumdatin I, a new ultraviolet-A protecting benzodiazepine alkaloid from a marine isolate of the fungus Exophiala. J Antibiot 61:40–42

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to University of São Paulo for providing access to necessary resources, the financial and fellowship support from the Brazilian research funding agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de desenvolvimento Científico e Tecnológico (CNPq). The Department of Biomolecular Sciences and the Núcleo de Pesquisas em Produtos Naturais e Sintéticos – NPPNS are acknowledged.

Funding

This study had financial and logistic support from the Brazilian Antarctic Program (PROANTAR/MCTI/CNPq N°64/2013), Brazilian Marine Force, National Institute of Science and Technology (INCT: BioNat), Grant #465637/2014-0, and the State of São Paulo Research Foundation (FAPESP), Grant #2014/50926-0 and 2017/03552-5.

Author information

Authors and Affiliations

Authors

Contributions

TRT prepared the design, conducted experiments, analyzed data, wrote, discussed, reviewed, and edited the manuscript. KCR, RSNT, CMK, and GSS conducted experiments, analyzed data, and contributed to the discussion part. SSME and PC edited and supervised the entire work. PC, LRG, and HMD designed, edited, supervised, and funded the project. All authors read and approved the manuscript.

Corresponding author

Correspondence to Hosana Maria Debonsi.

Ethics declarations

Ethics Approval

All experimental procedures involving humans were performed in accordance with the principles of the Declaration of Helsinki and were approved by the Human Research Ethics Committee of Faculty of Pharmaceutical Sciences of Ribeirão Preto, São Paulo, Brazil (CAAE no. 96779018.1.0000.5403). The written informed consent was signed by all the donors or their parents or legal guardian.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1084 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, T.R., Rangel, K.C., Tavares, R.S.N. et al. In Vitro Evaluation of the Photoprotective Potential of Quinolinic Alkaloids Isolated from the Antarctic Marine Fungus Penicillium echinulatum for Topical Use. Mar Biotechnol 23, 357–372 (2021). https://doi.org/10.1007/s10126-021-10030-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-021-10030-x

Keywords

Navigation