Skip to main content
Log in

Heterojunction formation between AgNbO3 and Co3O4 for full solar light utilization with improved charge-carrier separation

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In the present study, the charge-carrier recombination of visible light active perovskite silver niobate (AgNbO3) was reduced by forming heterojunction with Co3O4 through simple impregnation and calcination route. The loading percentage of Co3O4 was varied as 2, 5, and 10 wt.%. The XRD study revealed reduced interlayer spacing in the composite due to the replacement of the bigger Ag+ ions by the smaller Co2+ and Co3+ ions of Co3O4. It was observed that the light harvesting efficiency of the materials was increased with increased loading of Co3O4. The TEM and XPS analysis confirmed the presence of Ag nanoparticles over the perovskite in the composite. The electrochemical analysis revealed enhanced charge-carrier number density and increased charge-carrier lifetime in the composite as a result of the presence of both silver and cobalt ions in the lattice. Further this enhanced charge-carrier separation of the composites was established through photocatalysis of Bisphenol-A under both solar and LED light. Charge-trapping study indicated *O2 and *OH as the major radicals involved and Z-scheme as the predominant charge transfer pathway for generation of these reactive oxygen species.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

All the obtained data are present either in the manuscript or in supplementary.

References

  1. Rehman, S., Ullah, R., Butt, A., & Gohar, N. D. (2009). Strategies of making TiO2 and ZnO visible light active. Journal of Hazardous Materials, 170(2–3), 560–569. https://doi.org/10.1016/j.jhazmat.2009.05.064

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, F., Wang, X., Liu, H., Liu, C., Wan, Y., Long, Y., & Cai, Z. (2019). Recent advances and applications of semiconductor photocatalytic technology. Applied Sciences, 9(12), 2489. https://doi.org/10.3390/app9122489

    Article  CAS  Google Scholar 

  3. Zong, H., Zhao, T., Zhou, G., Qian, R., Feng, T., & Pan, J. H. (2019). Revisiting structural and photocatalytic properties of g-C3N4/TiO2: Is surface modification of TiO2 by calcination with urea an effective route to “solar” photocatalyst? Catalysis Today, 335, 252–261. https://doi.org/10.1016/j.cattod.2018.12.015

    Article  CAS  Google Scholar 

  4. Maeda, K. (2013). Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catalysis, 3(7), 1486–1503. https://doi.org/10.1021/cs4002089

    Article  CAS  Google Scholar 

  5. Zhou, G., Zhao, T., Wang, O., Xia, X., & Pan, J. H. (2020). Bi2Se3, Bi2Te3 quantum dots-sensitized rutile TiO2 nanorod arrays for enhanced solar photoelectrocatalysis in azo dye degradation. Journal of Physics: Energy, 3(1), 014003. https://doi.org/10.1088/2515-7655/abc52c

    Article  CAS  Google Scholar 

  6. Shi, J., & Guo, L. (2012). ABO3-based photocatalysts for water splitting. Progress in Natural Science: Materials International, 22(6), 592–615. https://doi.org/10.1016/j.pnsc.2012.12.002

    Article  Google Scholar 

  7. Muduli, R., Pattanayak, R., Raut, S., Sahu, P., Senthil, V., Rath, S., Kumar, P., Panigrahi, S., & Panda, R. K. (2016). Dielectric, ferroelectric and impedance spectroscopic studies in TiO2-doped AgNbO3 ceramic. Journal of Alloys and Compounds, 664, 715–725. https://doi.org/10.1016/j.jallcom.2015.12.259

    Article  CAS  Google Scholar 

  8. Li, G., Bai, Y., Liu, X., & Zhang, W. F. (2009). Surface photoelectric properties of AgNbO3 photocatalyst. Journal of Physics D: Applied Physics, 42(23), 235503. https://doi.org/10.1088/0022-3727/42/23/235503/meta

    Article  Google Scholar 

  9. Qian, R., Zong, H., Schneider, J., Zhou, G., Zhao, T., Li, Y., Yang, J., Bahnemann, D. W., & Pan, J. H. (2019). Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: An overview. Catalysis Today, 335, 78–90. https://doi.org/10.1016/j.cattod.2018.10.053

    Article  CAS  Google Scholar 

  10. Zhu, Y., Wan, T., Wen, X., Chu, D., & Jiang, Y. (2019). Tunable Type I and II heterojunction of CoOx nanoparticles confined in g-C3N4 nanotubes for photocatalytic hydrogen production. Applied Catalysis B: Environmental, 244, 814–822. https://doi.org/10.1016/j.apcatb.2018.12.015

    Article  CAS  Google Scholar 

  11. Liu, X., Zhang, Q., Liang, L., Chen, L., Wang, Y., Tan, X., Wen, L., & Huang, H. (2019). In situ growing of CoO nanoparticles on g-C3N4 composites with highly improved photocatalytic activity for hydrogen evolution. Royal Society Open Science, 6(7), 190433. https://doi.org/10.1098/rsos.190433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mahammadunnisa, S. K., Akanksha, T., Krushnamurty, K., & Subrahmanyam, C. H. (2016). Catalytic decomposition of N2O over CeO2 supported Co3O4 catalysts. Journal of Chemical Sciences, 128(11), 1795–1804. https://doi.org/10.1007/s12039-016-1180-3

    Article  CAS  Google Scholar 

  13. Qiu, P., Chen, H., & Jiang, F. (2014). Cobalt modified mesoporous graphitic carbon nitride with enhanced visible-light photocatalytic activity. Rsc Advances, 4(75), 39969–39977. https://doi.org/10.1039/C4RA06451H

    Article  CAS  Google Scholar 

  14. Liu, Y., Yang, J., Wu, B., Zhang, W., Zhang, X., Shan, C., & Liu, Q. (2020). CeO2/Co3O4 hollow microsphere: Pollen-biotemplated preparation and application in photo-catalytic degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586, 124193. https://doi.org/10.1016/j.colsurfa.2019.124193

    Article  CAS  Google Scholar 

  15. Ramakrishnan, V., Kim, H., Park, J., & Yang, B. (2016). Cobalt oxide nanoparticles on TiO2 nanorod/FTO as a photoanode with enhanced visible light sensitization. RSC Advances, 6(12), 9789–9795. https://doi.org/10.1039/C5RA23200G

    Article  CAS  Google Scholar 

  16. Chen, J., Wu, X., & Selloni, A. (2011). Electronic structure and bonding properties of cobalt oxide in the spinel structure. Physical Review B, 83(24), 245204. https://doi.org/10.1103/PhysRevB.83.245204

    Article  CAS  Google Scholar 

  17. Langell, M. A., Anderson, M. D., Carson, G. A., Peng, L., & Smith, S. (1999). Valence-band electronic structure of Co3O4 epitaxy on CoO (100). Physical Review B, 59(7), 4791. https://doi.org/10.1103/PhysRevB.59.4791

    Article  CAS  Google Scholar 

  18. Shu, H., Xie, J., Xu, H., Li, H., Gu, Z., Sun, G., & Xu, Y. (2010). Structural characterization and photocatalytic activity of NiO/AgNbO3. Journal of Alloys and Compounds, 496(1–2), 633–637. https://doi.org/10.1016/j.jallcom.2010.02.148

    Article  CAS  Google Scholar 

  19. Wang, C., Yan, J., Wu, X., Song, Y., Cai, G., Xu, H., Zhu, J., & Li, H. (2013). Synthesis and characterization of AgBr/AgNbO3 composite with enhanced visible-light photocatalytic activity. Applied Surface Science, 273, 159–166. https://doi.org/10.1016/j.apsusc.2013.02.004

    Article  CAS  Google Scholar 

  20. Ma, S. S. K., Maeda, K., Hisatomi, T., Tabata, M., Kudo, A., & Domen, K. (2013). A redox-mediator-free solar-driven Z-scheme water-splitting system consisting of modified Ta3N5 as an oxygen-evolution photocatalyst. Chemistry A European Journal, 19(23), 7480–7486. https://doi.org/10.1002/chem.201300579

    Article  CAS  PubMed  Google Scholar 

  21. Yu, Y. G., Chen, G., Hao, L. X., Zhou, Y. S., Wang, Y., Pei, J., Sun, J.-X., & Han, Z. H. (2013). Doping La into the depletion layer of the Cd0.6Zn0.4S photocatalyst for efficient H2 evolution. Chemical Communications, 49(86), 10142–10144. https://doi.org/10.1039/C3CC45568H

    Article  CAS  PubMed  Google Scholar 

  22. Manjula, N., Pugalenthi, M., Nagarethinam, V. S., Usharani, K., & Balu, A. R. (2015). Effect of doping concentration on the structural, morphological, optical and electrical properties of Mn-doped CdO thin films. Materials Science Poland, 33(4), 774–781. https://doi.org/10.1515/msp-2015-0115

    Article  CAS  Google Scholar 

  23. Muiruri, A., Maringa, M., & du Preez, W. (2020). Evaluation of dislocation densities in various microstructures of additively manufactured Ti6Al4V (ELI) by the method of x-ray diffraction. Materials, 13(23), 5355. https://doi.org/10.3390/ma13235355

    Article  CAS  PubMed Central  Google Scholar 

  24. Zheng, B. J., Lian, J. S., Zhao, L., & Jiang, Q. (2011). Optical and electrical properties of Sn-doped CdO thin films obtained by pulse laser deposition. Vacuum, 85(9), 861–865. https://doi.org/10.1016/j.vacuum.2011.01.002

    Article  CAS  Google Scholar 

  25. Rashad, M., Rüsing, M., Berth, G., Lischka, K., & Pawlis, A. (2013). CuO and Co3O4 nanoparticles: Synthesis, characterizations, and Raman spectroscopy. Journal of Nanomaterials, 2013, 714853. https://doi.org/10.1155/2013/714853

    Article  CAS  Google Scholar 

  26. Muduli, R., Kumar, P., Panda, R. K., & Panigrahi, S. (2016). Dielectric, ferroelectric and impedance spectroscopic studies of Mn and W modified AgNbO3 ceramics. Materials Chemistry and Physics, 180, 422–431. https://doi.org/10.1016/j.matchemphys.2016.06.026

    Article  CAS  Google Scholar 

  27. Li, G., Kako, T., Wang, D., Zou, Z., & Ye, J. (2007). Composition dependence of the photophysical and photocatalytic properties of (AgNbO3)1–x(NaNbO3)x solid solutions. Journal of Solid State Chemistry, 180(10), 2845–2850. https://doi.org/10.1016/j.jssc.2007.08.006

    Article  CAS  Google Scholar 

  28. Li, G., Bai, Y., Zhang, W. F., & Zhang, H. (2013). Enhanced visible light photocatalytic properties of AgNbO3/AgSbO3 composites. Materials Chemistry and Physics, 139(2–3), 1009–1013. https://doi.org/10.1016/j.matchemphys.2013.03.003

    Article  CAS  Google Scholar 

  29. Jyoti, K., Baunthiyal, M., & Singh, A. (2016). Characterization of silver nanoparticles synthesized using Urtica dioica Linn leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9(3), 217–227. https://doi.org/10.1016/j.jrras.2015.10.002

    Article  CAS  Google Scholar 

  30. Prakash, P., Gnanaprakasam, P., Emmanuel, R., Arokiyaraj, S., & Saravanan, M. (2013). Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids and Surfaces B: Biointerfaces, 108, 255–259. https://doi.org/10.1016/j.colsurfb.2013.03.017

    Article  CAS  PubMed  Google Scholar 

  31. Liu, H., Gao, N., Liao, M., & Fang, X. (2015). Hexagonal-like Nb2O5 nanoplates-based photodetectors and photocatalyst with high performances. Scientific Reports, 5(1), 1–9. https://doi.org/10.1038/srep07716

    Article  CAS  Google Scholar 

  32. Dhakal, P., Ciovati, G., Pudasaini, U., Chetri, S., Balachandran, S., & Lee, P. J. (2019). Surface characterization of nitrogen-doped high purity niobium coupons compared with superconducting RF cavity performance. Physical Review Accelerators and Beams, 22(12), 122002. https://doi.org/10.1103/PhysRevAccelBeams.22.122002

    Article  CAS  Google Scholar 

  33. Yang, Y., Zhang, Y., Gou, C., Wu, W., Wang, H., & Zeng, Q. (2020). Solar photocatalytic degradation of thidiazuron in Yangtze River water matrix by Ag/AgCl–AC at circumneutral condition. Environmental Science and Pollution Research, 27(32), 40857–40869. https://doi.org/10.1007/s11356-020-09946-z

    Article  CAS  PubMed  Google Scholar 

  34. Murugadoss, G., Kumar, D. D., Kumar, M. R., Venkatesh, N., & Sakthivel, P. (2021). Silver decorated CeO2 nanoparticles for rapid photocatalytic degradation of textile rose bengal dye. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-020-79993-6

    Article  CAS  Google Scholar 

  35. Ahmed, S. F., Moon, M. W., & Lee, K. R. (2009). Effect of silver doping on optical property of diamond like carbon films. Thin Solid Films, 517(14), 4035–4038. https://doi.org/10.1016/j.tsf.2009.01.135

    Article  CAS  Google Scholar 

  36. Zhao, X., Huang, J., Feng, L., Cao, L., Li, J., & Zhou, L. (2017). Facile synthesis of α-Ag3VO4 hollow nanospheres with improved photocatalytic activities. Journal of Alloys and Compounds, 718, 7–14. https://doi.org/10.1016/j.jallcom.2017.05.107

    Article  CAS  Google Scholar 

  37. Van Viet, P., Phan, B. T., Mott, D., Maenosono, S., Sang, T. T., & Thi, C. M. (2018). Silver nanoparticle loaded TiO2 nanotubes with high photocatalytic and antibacterial activity synthesized by photoreduction method. Journal of Photochemistry and Photobiology A: Chemistry, 352, 106–112. https://doi.org/10.1016/j.jphotochem.2017.10.051

    Article  CAS  Google Scholar 

  38. Gautier, J. L., Rios, E., Gracia, M., Marco, J. F., & Gancedo, J. R. (1997). Characterisation by X-ray photoelectron spectroscopy of thin MnxCo3− xO4 (1≥ x≥ 0) spinel films prepared by low-temperature spray pyrolysis. Thin Solid Films, 311(1–2), 51–57. https://doi.org/10.1016/S0040-6090(97)00463-X

    Article  CAS  Google Scholar 

  39. Barakat, N. A., Kim, B., Park, S. J., Jo, Y., Jung, M. H., & Kim, H. Y. (2009). Cobalt nanofibers encapsulated in a graphite shell by an electrospinning process. Journal of Materials Chemistry, 19(39), 7371–7378. https://doi.org/10.1039/B904669K

    Article  CAS  Google Scholar 

  40. Thomas, L., Arbouch, I., Guérin, D., Wallart, X., van Dyck, C., Mélin, T., Cornil, J., Vuillaume, D., & Lenfant, S. (2021). Conductance switching of azobenzene-based self-assembled monolayers on cobalt probed by UHV conductive-AFM. Nanoscale, 13(14), 6977–6990. https://doi.org/10.1039/D1NR00106J

    Article  CAS  PubMed  Google Scholar 

  41. Kudielka, A., Schmid, M., Klein, B. P., Pietzonka, C., Gottfried, J. M., & Harbrecht, B. (2020). Nanocrystalline cobalt hydroxide oxide: Synthesis and characterization with SQUID, XPS, and NEXAFS. Journal of Alloys and Compounds, 824, 153925. https://doi.org/10.1016/j.jallcom.2020.153925

    Article  CAS  Google Scholar 

  42. Borod’Ko, Y. G., Vetchinkin, S. I., Zimont, S. L., Ivleva, I. N., & Shul’Ga, Y. M. (1976). Nature of satellites in X-ray photoelectron spectra XPS of paramagnetic cobalt (II) compounds. Chemical Physics Letters, 42(2), 264–267. https://doi.org/10.1016/0009-2614(76)80360-0

    Article  CAS  Google Scholar 

  43. Tian, Z. Y., Kouotou, P. M., El Kasmi, A., Ngamou, P. H. T., Kohse-Höinghaus, K., Vieker, H., Beyer, A., & Gölzhäuser, A. (2015). Low-temperature deep oxidation of olefins and DME over cobalt ferrite. Proceedings of the Combustion Institute, 35(2), 2207–2214. https://doi.org/10.1016/j.proci.2014.06.111

    Article  CAS  Google Scholar 

  44. Kavitha, S., & Kurian, M. (2019). Effect of zirconium doping in the microstructure, magnetic and dielectric properties of cobalt ferrite nanoparticles. Journal of Alloys and Compounds, 799, 147–159. https://doi.org/10.1016/j.jallcom.2019.05.183

    Article  CAS  Google Scholar 

  45. Petitto, S. C., Marsh, E. M., Carson, G. A., & Langell, M. A. (2008). Cobalt oxide surface chemistry: The interaction of CoO (100), Co3O4 (110) and Co3O4 (111) with oxygen and water. Journal of Molecular Catalysis A: Chemical, 281(1–2), 49–58. https://doi.org/10.1016/j.molcata.2007.08.023

    Article  CAS  Google Scholar 

  46. Lu, A., Chen, Y., Zeng, D., Li, M., Xie, Q., Zhang, X., & Peng, D. L. (2013). Shape-related optical and catalytic properties of wurtzite-type CoO nanoplates and nanorods. Nanotechnology, 25(3), 035707. https://doi.org/10.1088/0957-4484/25/3/035707/meta

    Article  Google Scholar 

  47. Idriss, H. (2021). On the wrong assignment of the XPS O1s signal at 531–532 eV attributed to oxygen vacancies in photo-and electro-catalysts for water splitting and other materials applications. Surface Science, 712, 121894. https://doi.org/10.1016/j.susc.2021.121894

    Article  CAS  Google Scholar 

  48. Christy, A. A., Kvalheim, O. M., & Velapoldi, R. A. (1995). Quantitative analysis in diffuse reflectance spectrometry: A modified Kubelka-Munk equation. Vibrational Spectroscopy, 9(1), 19–27. https://doi.org/10.1016/0924-2031(94)00065-O

    Article  CAS  Google Scholar 

  49. Sahoo, P., Sharma, A., Padhan, S., Udayabhanu, G., & Thangavel, R. (2019). UV-assisted water splitting of stable Cl-doped ZnO nanorod photoanodes grown via facile sol-gel hydrothermal technique for enhanced solar energy harvesting applications. Solar Energy, 193, 148–163. https://doi.org/10.1016/j.solener.2019.09.045

    Article  CAS  Google Scholar 

  50. Kuila, A., Saravanan, P., Bahnemann, D., & Wang, C. (2021). Novel Ag decorated, BiOCl surface doped AgVO3 nanobelt ternary composite with Z-scheme homojunction-heterojunction interface for high prolific photo switching, quantum efficiency and hole mediated photocatalysis. Applied Catalysis B: Environmental, 293, 120224. https://doi.org/10.1016/j.apcatb.2021.120224

    Article  CAS  Google Scholar 

  51. Bott, A. W. (1998). Electrochemistry of semiconductors. Current Separations, 17, 87–92.

    CAS  Google Scholar 

  52. Fan, J., Shavel, A., Zamani, R., Fábrega, C., Rousset, J., Haller, S., Güell, F., Carrete, A., Andreu, T., Arbiol, J., Morante, J. R., & Cabot, A. (2011). Control of the doping concentration, morphology and optoelectronic properties of vertically aligned chlorine- doped ZnO nanowires. Acta Materialia, 59, 6790–6800. https://doi.org/10.1016/j.actamat.2011.07.037

    Article  CAS  Google Scholar 

  53. Karmakar, K., Sarkar, A., Mandal, K., & Khan, G. G. (2016). Stable and enhanced visible-light water electrolysis using C, N, and S surface functionalized ZnO nanorod photoanodes: Engineering the absorption and electronic structure. ACS Sustainable Chemistry and Engineering, 4, 5693–5702. https://doi.org/10.1021/acssuschemeng.6b01604

    Article  CAS  Google Scholar 

  54. Wang, J., Wang, D., Miller, E. K., Moses, D., Bazan, G. C., & Heeger, A. J. (2000). Photoluminescence of water-soluble conjugated polymers: Origin of enhanced quenching by charge transfer. Macromolecules, 33(14), 5153–5158. https://doi.org/10.1021/ma000081j

    Article  CAS  Google Scholar 

  55. Krumova, K., & Cosa, G. (2016). Overview of reactive oxygen species. Singlet Oxygen: Applications in Biosciences and Nanosciences, 1, 1–21. https://doi.org/10.1039/9781782622208-00001

    Article  Google Scholar 

Download references

Acknowledgements

Dr. SP is thankful to the DST-SERB for the financial support received under IMPRINT with Grant code IMP/2019/000286.

Author information

Authors and Affiliations

Authors

Contributions

AR conceptualized, executed the work and wrote the article. PS provided the idea and general concept for the article and critically revised the work. Both the authors read and approved the final manuscript.

Corresponding author

Correspondence to Pichiah Saravanan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8324 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, A., Saravanan, P. Heterojunction formation between AgNbO3 and Co3O4 for full solar light utilization with improved charge-carrier separation. Photochem Photobiol Sci 21, 1735–1750 (2022). https://doi.org/10.1007/s43630-022-00253-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00253-9

Keywords

Navigation