Skip to main content
Log in

Visible-Light-Induced AgI/Bi7O9I3 Composites with Enhanced Photocatalytic Activity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Highly efficient visible-light-driven AgI/Bi7O9I3 hybrid photocatalysts with different weight ratios of AgI were prepared via solvothermal-ion exchange method. Under visible light irradiation (>420 nm), the AgI/Bi7O9I3 photocatalysts displayed the higher photocatalytic activity than pure AgI and Bi7O9I3 for the degradation of bisphenol A (BPA). Among the hybrids, AgI/Bi7O9I3 with 33 wt% of AgI exhibited the highest photocatalytic activity for the degradation of BPA. X-ray photoelectron spectroscopy results revealed that the formation of metallic Ag0 from the hybrids was not observed during the photocatalytic reaction. Further, the photocatalytic activity of AgI/Bi7O9I3 maintained after five recycling runs. The quenching effects of different scavengers displayed that the reactive O2 ·− and h+ play the major role in the BPA degradation. The excellent photocatalytic activity of the AgI/Bi7O9I3 composites were closely related to the fast transfer and efficient separation of electron–hole pairs at the interfaces of the two semiconductors derived from the matching band positions between AgI and Bi7O9I3.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Su WY, Wang JA, Huang YX, Wang WJ, Wu L, Wang XX, Liu P (2010) Scr Mater 62:345

    Article  CAS  Google Scholar 

  2. Zhu LP, Liao GH, Bing NC, Wang LL, Yang Y, Xie HY (2010) CrystEngComm 12:3791

    Article  CAS  Google Scholar 

  3. Zhang J, Shi FJ, Lin J, Chen DF, Gao JM, Huang ZX, Ding XX, Tang CC (2008) Chem Mater 20:2937

    Article  CAS  Google Scholar 

  4. Xiao X, Zhang WD (2010) J Mater Chem 20:5866

    Article  CAS  Google Scholar 

  5. Zhang X, Ai ZH, Jia FL, Zhang LZ (2008) J Phys Chem C 112:747

    Article  CAS  Google Scholar 

  6. Chang XF, Huang J, Tan QY, Wang M, Ji GB, Deng SB, Yu G (2009) Catal Commun 10:1957

    Article  CAS  Google Scholar 

  7. Keller E, Krämer V, Schmidt M, Oppermann H (2002) Z Kristallogr 217:256

    CAS  Google Scholar 

  8. Schmidt M, Oppermann H, Bruckner H, Binnewies M (1997) Z Anorg Allg Chem 623:1945

    Article  CAS  Google Scholar 

  9. Rittner P, Oppermann H (1992) Z Anorg Allg Chem 617:131

    Article  CAS  Google Scholar 

  10. Keller E, Krämer V (2007) Acta Crystallogr C 63:i109

    Article  CAS  Google Scholar 

  11. Eggenweiler U, Ketterer J, Keller E, Krämer V (2001) Z Kristallogr 216:230

    CAS  Google Scholar 

  12. Ketterer J, Keller E, Krämer V (1985) Z Kristallogr 172:63

    Article  CAS  Google Scholar 

  13. Huang WL, Zhu QS (2008) Comput Mater Sci 43:1101

    Article  CAS  Google Scholar 

  14. Huang WL, Zhu QS (2009) J Comput Chem 30:183

    Article  Google Scholar 

  15. Anandan S, Lee G, Chen P, Fan C, Wu JJ (2010) Ind Eng Chem Res 49:9729

    Article  CAS  Google Scholar 

  16. Hameed A, Montini T, Gombac V, Fornasiero P (2008) J Am Chem Soc 130:9658

    Article  CAS  Google Scholar 

  17. Xiao X, Zhang WD (2011) RSC Adv 1:1099

    Article  CAS  Google Scholar 

  18. Xiao X, Hao R, Zio X, Nan J, Li L, Zhang WD (2012) Chem Eng J 209:293

    Article  CAS  Google Scholar 

  19. Yu H, Liu L, Wang X, Wang P, Yu J, Wang Y (2012) Dalton Trans 41:10405

    Article  CAS  Google Scholar 

  20. Cheng H, Wang W, Huang B, Wang Z, Zhan J, Qin X, Zhang X, Dai Y (2013) J Mater Chem A 1:7131

    Article  CAS  Google Scholar 

  21. Li T, Luo S, Yang L (2013) Mater Lett 109:247

    Article  CAS  Google Scholar 

  22. Cao J, Zhao Y, Lin H, Xu B, Chen S (2013) J Solid State Chem 206:38.

    Article  CAS  Google Scholar 

  23. Zhang Z, Jiang D, Xing C, Chen L, Chen M, He M (2015) Dalton Trans 44:11582

    Article  CAS  Google Scholar 

  24. Zeng C, Hu Y, Guo Y, Zhang T, Dong F, Zhang Y, Huang H (2016) ACS Sustain Chem Eng 4:3305

    Article  CAS  Google Scholar 

  25. Islam MJ, Reddy DA, Ma R, Kim Y, Kim TK (2016) Solid State Sci 61:32

    Article  CAS  Google Scholar 

  26. Katsumata H, Taniguchi M, Kaneco S, Suzuki T (2013) Catal Commun 34:30

    Article  CAS  Google Scholar 

  27. Li Y, Yao H, Wang J, Wang N, Li Z (2011) Mater Res Bull 46:292

    Article  CAS  Google Scholar 

  28. Rawalekar S, Mokari T (2013) Adv Energy Mater 3:12

    Article  CAS  Google Scholar 

  29. Katsumata H, Hayashi T, Taniguchi M, Suzuki T, Kaneco S (2015) Mater Res Bull 63:116

    Article  CAS  Google Scholar 

  30. Hu C, Peng TW, Hu XX, Nie YL, Zhou XF, Qu JH, He H (2010) J Am Chem Soc 132:857

    Article  CAS  Google Scholar 

  31. Cheng HF, Huang BB, Wang P, Wang ZY, Lou ZZ, Wang JP, Qin XY, Zhang XY, Dai Y (2011) Chem Commun 47:7054

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research (C) No. 15K05642 from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and Iketani Science & Technology Foundation (No. 0271055-A). The authors would like to thank T. Sasaki, Mie University, for technical assistance with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Katsumata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tateishi, I., Katsumata, H., Suzuki, T. et al. Visible-Light-Induced AgI/Bi7O9I3 Composites with Enhanced Photocatalytic Activity. Catal Lett 147, 1503–1509 (2017). https://doi.org/10.1007/s10562-017-2059-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2059-8

Keywords

Navigation