Skip to main content
Log in

Excitation wavelength- and intensity-dependent stepwise two-photon-induced photochromic reaction

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photochromic molecules showing wavelength-selective or light intensity-dependent photoresponse are receiving increased attention in recent years. Although a photoswitch with a single chromophore can control the ON and OFF states of a function, that consisting of multi-chromophores would be useful for the specific control in complex systems. Herein, we designed stepwise two-photon induced photochromic molecules (PABI–PIC and PABI–PIC2) consisting of two different photochromic units (PABI and PIC). One-photon absorption reaction in the UV light region of PABI–PIC generates the short-lived transient biradical (BR) that absorbs an additional photon in the visible and UV light region in a stepwise manner to produce the two-photon photochemical product, the quinoidal species (Quinoid). The photochromic properties of these transient species are completely different in color and fading speed. In addition, PABI–PIC also shows the excitation wavelength-dependent photochromism because the excited states of the PABI and PIC units are electronically orthogonal. Therefore, the stepwise photochromic properties of PABI–PIC are easily controlled depending on the excitation light intensity and wavelength. These molecular designs are important for the development of advanced photoresponsive materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Crano, J. C., & Guglielmetti, R. J. (1999). Organic photochromic and thermochromic compounds. Plenum Press.

    Google Scholar 

  2. Feringa, B. L. (2001). Molecular switches. Wiley-VCH.

    Book  Google Scholar 

  3. Dürr, H., & Bouas-Laurent, H. (2003). Photochromism: molecules and systems. Elsevier.

    Google Scholar 

  4. Irie, M., Yokoyama, Y., & Seki, T. (2013). New frontiers in photochromism. Springer.

    Book  Google Scholar 

  5. Irie, M., Fukaminato, T., Matsuda, K., & Kobatake, S. (2014). Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chemical Reviews, 114(24), 12174–12277. https://doi.org/10.1021/cr500249p

    Article  CAS  PubMed  Google Scholar 

  6. Tian, H., & Zhang, J. (2016). Photochromic materials. Wiley-VCH.

    Google Scholar 

  7. Göppert-Mayer, M. (1931). Über Elementarakte mit zwei Quantensprüngen. Annalen der Physik, 401(3), 273–294. https://doi.org/10.1002/andp.19314010303

    Article  Google Scholar 

  8. Kaiser, W., & Garrett, C. G. B. (1961). Two-photon excitation in CaF2:Eu2+. Phys Rev Lett, 7(6), 229–231. https://doi.org/10.1103/PhysRevLett.7.229

    Article  CAS  Google Scholar 

  9. Parthenopoulos, D. A., & Rentzepis, P. M. (1989). Three-dimensional optical storage memory. Science, 245(4920), 843–845. https://doi.org/10.1126/science.245.4920.843

    Article  CAS  PubMed  Google Scholar 

  10. Cumpston, B. H., Ananthavel, S. P., Barlow, S., Dyer, D. L., Ehrlich, J. E., Erskine, L. L., Heikal, A. A., Kuebler, S. M., Lee, I.-Y.S., McCord-Maughon, D., Qin, J., Rockel, H., Rumi, M., Wu, X., Marder, S. R., & Perry, J. W. (1999). Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature, 398, 51–54. https://doi.org/10.1038/17989

    Article  CAS  Google Scholar 

  11. Kawata, S., & Kawata, Y. (2000). Three-dimensional optical data storage using photochromic materials. Chem Rev, 100(5), 1777. https://doi.org/10.1021/cr980073p

    Article  CAS  PubMed  Google Scholar 

  12. He, G. S., Tan, L.-S., Zheng, Q., & Prasad, P. S. (2008). Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem Rev, 108(4), 1245–1330. https://doi.org/10.1021/cr050054x

    Article  CAS  PubMed  Google Scholar 

  13. Pawlicki, M., Collins, H. A., Denning, R. G., & Anderson, H. L. (2009). Two-photon absorption and the design of two-photon dyes. Angew Chem Int Ed, 48(18), 3244–3266. https://doi.org/10.1002/anie.200805257

    Article  CAS  Google Scholar 

  14. Parker, C. A., & Hatchard, C. G. (1962). Delayed fluorescence from solutions of anthracene and phenanthrene. Proc R Soc Lond A, 269(1339), 574–584. https://doi.org/10.1098/rspa.1962.0197

    Article  Google Scholar 

  15. Birks, J. B. (1967). The Quintet State of the pyrene excimer. Phys Lett A, 24(9), 479–480. https://doi.org/10.1016/0375-9601(67)90152-1

    Article  CAS  Google Scholar 

  16. Baluschev, S., Miteva, T., Yakutkin, V., Nelles, G., Yasuda, A., & Wegner, G. (2006). Up-conversion fluorescence: noncoherent excitation by sunlight. Phys Rev Lett, 97(14), 7–9. https://doi.org/10.1103/PhysRevLett.97.143903

    Article  CAS  Google Scholar 

  17. Singh-Rachford, T. N., & Castellano, F. N. (2010). Photon upconversion based on sensitized triplet-triplet annihilation. Coord Chem Rev, 254(21–22), 2560–2573. https://doi.org/10.1016/j.ccr.2010.01.003

    Article  CAS  Google Scholar 

  18. Zhou, J., Liu, Q., Feng, W., Sun, Y., & Li, F. (2015). Upconversion luminescent materials: advances and applications. Chem Rev, 115(1), 395–465. https://doi.org/10.1021/cr400478f

    Article  CAS  PubMed  Google Scholar 

  19. Yanai, N., & Kimizuka, N. (2017). New triplet sensitization routes for photon upconversion: thermally activated delayed fluorescence molecules, inorganic nanocrystals, and singlet-to-triplet absorption. Acc Chem Res, 50(10), 2487–2495. https://doi.org/10.1021/acs.accounts.7b00235

    Article  CAS  PubMed  Google Scholar 

  20. Tokunaga, A., Uriarte, L. M., Mutoh, K., Fron, E., Hofkens, J., Sliwa, M., & Abe, J. (2019). Photochromic reaction by red light via triplet fusion upconversion. J Am Chem Soc, 141(44), 17744–17753. https://doi.org/10.1021/jacs.9b08219

    Article  CAS  PubMed  Google Scholar 

  21. Miyasaka, H., Murakami, M., Itaya, A., Guillaumont, D., Nakamura, S., & Irie, M. (2001). Multiphoton gated photochromic reaction in a diarylethene derivative. J Am Chem Soc, 123(4), 753–754. https://doi.org/10.1021/ja002545z

    Article  CAS  PubMed  Google Scholar 

  22. Mori, K., Ishibashi, Y., Matsuda, H., Ito, S., Nagasaka, Y., Nakagawa, H., Uchida, K., Yokojima, S., Nakamura, S., Irie, M., & Miyasaka, H. (2011). One-color reversible control of photochromic reactions in a diarylethene derivative: three-photon cyclization and two-photon cycloreversion by a near-infrared femtosecond laser pulse at 1.28 μm. J Am Chem Soc, 133(8), 2621–2625. https://doi.org/10.1021/ja108992t

    Article  CAS  PubMed  Google Scholar 

  23. Kobayashi, Y., Mutoh, K., & Abe, J. (2016). Fast photochromic molecules toward realization of photosynergetic effects. J Phys Chem Lett, 7(18), 3666–3675. https://doi.org/10.1021/acs.jpclett.6b01690

    Article  CAS  PubMed  Google Scholar 

  24. Kobayashi, Y., Mutoh, K., & Abe, J. (2018). Stepwise two-photon absorption processes utilizing photochromic reactions. J Photochem Photobiol C, 34, 2–28. https://doi.org/10.1016/j.jphotochemrev.2017.12.006

    Article  CAS  Google Scholar 

  25. Asato, R., Martin, C. J., Calupitan, J. P., Mizutsu, R., Nakashima, T., Okada, G., Kawaguchi, N., Yanagida, T., & Kawai, T. (2020). Photosynergetic amplification of radiation input: from efficient uv induced cycloreversion to sensitive X-ray detection. Chemical Science, 11(9), 2504–2510. https://doi.org/10.1039/C9SC05380H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miyasaka, H., Matsuda, K., Abe, J., & Kawai, T. (2020). Photosynergetic responses in molecules and molecular aggregates. Springer.

    Book  Google Scholar 

  27. Bochet, C. G. (2000). Wavelength-selective cleavage of photolabile protecting groups. Tetrahedron Lett, 41(33), 6341–6346. https://doi.org/10.1016/S0040-4039(00)01050-9

    Article  CAS  Google Scholar 

  28. Blanc, A., & Bochet, C. G. (2002). Wavelength-controlled orthogonal photolysis of protecting groups. J Org Chem, 67(16), 5567–5577. https://doi.org/10.1021/jo025837m

    Article  CAS  PubMed  Google Scholar 

  29. Higashiguchi, K., Matsuda, K., & Irie, M. (2003). Photochromic reaction of a fused dithienylethene: multicolor photochromism. Angew Chem Int Ed, 42(30), 3537–3540. https://doi.org/10.1002/anie.200351751

    Article  CAS  Google Scholar 

  30. Higashiguchi, K., Matsuda, K., Tanifuji, N., & Irie, M. (2005). Full-color photochromism of a fused dithienylethene trimer. J Am Chem Soc, 127(25), 8922–8923. https://doi.org/10.1021/ja051467i

    Article  CAS  PubMed  Google Scholar 

  31. Lerch, M. M., Hansen, M. J., Velema, W. A., Szymanski, W., & Feringa, B. L. (2016). Orthogonal photoswitching in a multifunctional molecular system. Nat Commun, 7, 12054. https://doi.org/10.1038/ncomms12054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao, F., Grubert, L., Hecht, S., & Bléger, D. (2017). Orthogonal switching in four-state azobenzene mixed-dimers. Chem Commun, 53(23), 3323–3326. https://doi.org/10.1039/C7CC00504K

    Article  CAS  Google Scholar 

  33. Jeong, M., Park, J., & Kwon, S. (2020). Molecular switches and motors powered by orthogonal stimuli. Eur J Org Chem, 2020(47), 7254–7283. https://doi.org/10.1002/ejoc.202001179

    Article  CAS  Google Scholar 

  34. Suzuki, M., Asahi, T., & Masuhara, H. (2002). Photochromic reactions of crystalline spiropyrans and spirooxazines induced by intense femtosecond laser excitation. Phys Chem Chem Phys: PCCP, 4(2), 185–192. https://doi.org/10.1039/B108108J

    Article  CAS  Google Scholar 

  35. Carroll, E. C., Berlin, S., Levitz, J., Kienzler, M. A., Yuan, Z., Madsen, D., Larsen, D. S., & Isacoff, E. Y. (2015). Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics. Proc Natl Acad Sci U S Am, 112(7), E7776–E7785. https://doi.org/10.1073/pnas.1416942112

    Article  CAS  Google Scholar 

  36. Kobayashi, Y., Katayama, T., Yamane, T., Setoura, K., Ito, S., Miyasaka, H., & Abe, J. (2016). Stepwise two-photon-induced fast photoswitching via electron transfer in higher excited states of photochromic imidazole dimer. J Am Chem Soc, 138(18), 5930–5938. https://doi.org/10.1021/jacs.6b01470

    Article  CAS  PubMed  Google Scholar 

  37. Ashkenasy, G., Hermans, T. M., Otto, S., & Taylor, A. F. (2017). Systems chemistry. Chem Soc Rev, 46(9), 2543–2554. https://doi.org/10.1039/C7CS00117G

    Article  CAS  PubMed  Google Scholar 

  38. Yonekawa, I., Mutoh, K., Kobayashi, Y., & Abe, J. (2018). Intensity-dependent photoresponse of biphotochromic molecule composed of a negative and a positive photochromic unit. J Am Chem Soc, 140(3), 1091–1097. https://doi.org/10.1021/jacs.7b11673

    Article  CAS  PubMed  Google Scholar 

  39. Yonekawa, I., Mutoh, K., & Abe, J. (2019). Visible light intensity dependent negative photochromism of a binaphthyl-bridged phenoxyl-imidazolyl radical complex. Chem Commun, 55(9), 1221–1224. https://doi.org/10.1039/C8CC09591D

    Article  CAS  Google Scholar 

  40. Mutoh, K., Nakagawa, Y., Sakamoto, A., Kobayashi, Y., & Abe, J. (2015). Stepwise two-photon-gated photochemical reaction in photochromic [2.2] paracyclophane-bridged bis(imidazole dimer). J Am Chem Soc, 137(17), 5674–5677. https://doi.org/10.1021/jacs.5b02862

    Article  CAS  PubMed  Google Scholar 

  41. Yamashita, H., & Abe, J. (2014). Pentaarylbiimidazole, PABI: an easily synthesized fast photochromic molecule with superior durability. Chem Commun, 50(62), 8468–8471. https://doi.org/10.1039/C4CC03137G

    Article  CAS  Google Scholar 

  42. Yamashita, H., Ikezawa, T., Kobayashi, Y., & Abe, J. (2015). Photochromic phenoxyl-imidazolyl radical complexes with decoloration rates from tens of nanoseconds to seconds. J Am Chem Soc, 137(15), 4952–4955. https://doi.org/10.1021/jacs.5b02353

    Article  CAS  PubMed  Google Scholar 

  43. Mutoh, K., Kobayashi, Y., Yamane, T., Ikezawa, T., & Abe, J. (2017). Rate-tunable stepwise two-photon-gated photoresponsive systems employing a synergetic interaction between transient biradical units. J Am Chem Soc, 139(12), 4452–4461. https://doi.org/10.1021/jacs.6b13322

    Article  CAS  PubMed  Google Scholar 

  44. Mutoh, K., Toshimitsu, S., Kobayashi, Y., & Abe, J. (2021). Dynamic spin-spin interaction observed as interconversion of chemical bonds in stepwise two-photon induced photochromic reaction. J Am Chem Soc, 143(34), 13917–13928. https://doi.org/10.1021/jacs.1c06775

    Article  CAS  PubMed  Google Scholar 

  45. Satoh, Y., Ishibashi, Y., Ito, S., Nagasawa, Y., Miyasaka, H., Chosrowjan, H., Taniguchi, S., Mataga, N., Kato, D., Kikuchi, A., & Abe, J. (2007). Ultrafast laser photolysis study on photodissociation dynamics of a hexaarylbiimidazole derivative. Chem Phys Lett, 448(4–6), 228–231. https://doi.org/10.1016/j.cplett.2007.09.081

    Article  CAS  Google Scholar 

  46. Miyasaka, H., Satoh, Y., Ishibashi, Y., Ito, S., Taniguchi, S., Chosrowjan, H., Mataga, N., Kato, D., Kikuchi, A., & Abe, J. (2009). Ultrafast photodissociation dynamics of a hexaarylbiimidazole derivative with pyrenyl groups: dispersive reaction from femtosecond to 10 ns time regions. J Am Chem Soc, 131(21), 7256–7263. https://doi.org/10.1021/ja809195s

    Article  CAS  PubMed  Google Scholar 

  47. Yamamoto, K., Mutoh, K., & Abe, J. (2019). Photo- and electro-driven molecular switching system of aryl-bridged photochromic radical complexes. J Phys Chem A, 123(10), 1945–1952. https://doi.org/10.1021/acs.jpca.8b12384

    Article  CAS  PubMed  Google Scholar 

  48. Yamamoto, K., Gomita, I., Okajima, H., Sakamoto, A., Mutoh, K., & Abe, J. (2019). Electrochromism of fast photochromic radical complexes forming light-unresponsive stable colored radical cation. Chem Commun, 55(34), 4917–4920. https://doi.org/10.1039/C9CC00455F

    Article  CAS  Google Scholar 

  49. Mayer, U., Baumgartel, F., & Zimmermann, H. (1966). Über Biradikale, Chinone und Semichinone der Imidazolyl-Reihe. Angewandte Chemie, 78(5), 303. https://doi.org/10.1002/ange.19660780505

    Article  CAS  Google Scholar 

  50. Kikuchi, A., Iwahori, F., & Abe, J. (2004). Definitive evidence for the contribution of biradical character in a closed-shell molecule, derivative of 1,4-bis-(4,5-diphenylimidazol-2-ylidene)cyclohexa-2,5-diene. J Am Chem Soc, 126(21), 6526–6527. https://doi.org/10.1021/ja049423h

    Article  CAS  PubMed  Google Scholar 

  51. Nakano, E., Mutoh, K., Kobayashi, Y., & Abe, J. (2014). Electrochemistry of photochromic [2.2] paracyclophane-bridged imidazole dimers: rational understanding of the electronic structures. J Phys Chem A, 118(12), 2288–2297. https://doi.org/10.1021/jp412672a

    Article  CAS  PubMed  Google Scholar 

  52. Monroe, B. M., & Weed, G. C. (1993). Photoinitiators for free-radical-initiated photoimaging systems. Chem Rev, 93(1), 435–448. https://doi.org/10.1021/cr00017a019

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP18H05263.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiro Abe.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 15270 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutoh, K., Yamamoto, K. & Abe, J. Excitation wavelength- and intensity-dependent stepwise two-photon-induced photochromic reaction. Photochem Photobiol Sci 21, 1445–1458 (2022). https://doi.org/10.1007/s43630-022-00234-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00234-y

Keywords

Navigation